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The Schrodinger equation is obtained by Feynman's path integration method of quantization for a general dyna-
mical system. The meaning of the results is discussed. 

I. INTRODUCTION 
We present a derivation of the "Schrodinger equation" 
for a general dynamical system using Feynman's 
path integrall method of quantization. The result 
differs from the "usual Schrodinger equation" in that 
there is an additional term proportional to the total 
curvature R of the coordinate space defined with a 
geometry given by the kinetic This result 
had been given before by DeWitt.2 In a curved space 
or in cases of constraints where R "" numerical con-
stant, the presence of this additional term would 
change the energy spectrum of the whole system. In 
Sec. III we discuss the meaning of this additional 
term. 

II. DERIVATION OF THE SCHRODINGER EQUATION 
We will give a detailed derivation of the Schrodinger 
equation for a general mechanical system by using 
the path-integral method of Feynman. For a given 
mechanical system described by a set of coordinates 
q (q 1, q2, ... qN), let the Lagrangian be 

Following Ref. 1, we can generalize Eqs. (1)-(18) to 
the above system, that is, 

1J;(q(t + E), t + E) = (l/A) I exp [(ijn) S(q(t + E), q(t»] 

(1 ) 

x 1J;(q(t), t)-Jg(q(t»dq(t), (2) 

where 1J;(q(t + E), t + E) and lJ;(q(t), t) are, respectively, 
wavefunctions at time t + E and t, S(q(t + E), q(t» is 
the classical action, that is, 

S(q(t + E), q(t» = minimum of Itt+E L(q(t'), q(t'»dt' (3) 

with the boundary conditions 

A is a normalization factor to be determined later 
andg is the determinant of (gij)' Taking the limit of 
Eq. (2) when E 0, we can derive the Schrodinger 
equation. Now as E 0, the factor exp[(i/IZ)S(q(t + E), 
q(t»] oscillates very rapidly. Only the vicinity of the 
stationary point of S(q(t + E), q(t» contributes to the 
integral in Eq. (2). The stationary point is 

q(t) = q(t + E). (5) 

As we shall see the region which contributes to the 
integral in Eq. (2) is It,q 1= 1 q(t) - q(t + E) I;S El/2. 
Thus we can expand S(q(t + E), q(t)) as a power series 
of t,q. This is done in Appendix A and gives 

S(q(t + E), q(t» = iE gij(q(t + E» 

x [t,qit,qj - t,qjt,qmt,qn 

+ ! j i I j j I t,qmt,qnt,q<xt,qll 
4 Irnn\ I a /3\ 
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+ l i I + iJ a I) t,qjt,q mt,qnt,q I + .. J. 
3 Bql/rnnl /all /rnn\ J 

We also need the following expansions: 

-Jg(q(t» = "fg(q(t + E» _ t,qi a-Ji 
aq' 

(6) 

1 . . B2..fg (7) + 2D.q'D.qJ -.-. + "', 

1J;(q(t), t) = 1J;(q(t + E), t) - t,qi 
Bq' 

Bq'aqJ 

1 '. a2t/; + 2 t,q't,J -- + . ". (8) 
aqiBqj 

In these equations 

t,q = q(t + E) - q(t) 

and \ i ( is the Christoffel symbol, 
/rnnl 

i I = gik[rnn k] 
/ulnl ' , 

[rna k] = (Ogmk + og"k _ Ogmlz) 
, 2 oqn oqm aqk' 

(9) 

(10) 

(11) 

and (gi k) is the inverse matrix of (g i k)' Keeping the 
zero-order term (1/2E)g ij t,qit,qi in the exponential 
and expanding higher-order terms into power series, 
we get from Eq. (2) 

t/;(q(t + E), t + E) = i I gijt,qit,qi) 

x [1- gij t,qit,qmt,qn 

+ In:n\ j;J3f t,qmt,qnt,qat,qB 

+ gii (B:l + l,:nDt,qjt,qmt,qnt,ql 

_ gijgst j i (\ S I t,qit,qtt,qmt,qnt,q<xt,qB + .. J 
81Z2 E2 Imnl ta/3\ J 

x i";g(q(t + E» _ t,qi a-Ji + t t,qit,qi B2-Ji .) 
\' aq' Bq'BqJ 

x (t/;(q(t + E), t) _ t,qi at/;. 
aq' 

+ t t,qit,qi B2t/;. + ... ) d(t,ql) ••• d(t,qN). (12) 
qq'BqJ 

The following are two useful identities: 

Ii: ... I giit,qit,qi)d(t,q) = (irrIiE)N/2 g -1/2 
(13) 

i 1: ... i exp giit,qit,qi) 

x t,q<X1 t, q <X 2 .•. t, q <X 2m d(t,q) 
= (irrnE)N/2 g-1/2 (iliE)m{g<Xl<X2g<X3"4 •.. g"2m-la2m 
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+ terms with other possible permutations of 
(14) 

There are altogether (2m-1)(2m- 3)···5'3'1 terms. 

Using the two identities, we can easily find out the co-
efficients of l/I(q(t + E), t), al/l/aqm, a2l/1/aqmaqn. The 
calculations are in Appendix B. 

Here we just write down the results. Equation (12) 
becomes 

lj;(q(t + E), t) + E + ... 

:::::: (in; E )N/21l/l(q (t + E), t) 

+ tnE - --= -- vg g - - - 't" " .", [11 a (1- mn al/l) R'I.]I 
2 -Jg aqm aqn 6 \ 

where 
R :::::: giiR ij , 

Rij :::::: Rfja' 

(15) 

(16) 

(17) 

Compare the coefficient up to order E in Eq. (15). We 
get 

A :::::: (innE )N/2 (19) 

and 

Equation (20) is the "Schrodinger equation" using 
Feynman's path integration formulation of quantum 
mechanics. 

m. DISCUSSION 
(a) Equation (20) above is different from the "usual 
SchrOdinger equation" in which the term n2R/6 is ab-
sent. Notice that both equations are convariant under 
any coordinate transformation ql • •. qN Ql ..• QN. 

(b) In case the curvature R vanishes, one does not 
have to discuss which of the two equations is to be 
preferred, since they are the same. Such is the case 
when the kinetic energy is that of a collection of non-
relativistic particles in Euclidean space where N :::::: (3 
times the number of particles). 
(c) If R ,c 0, it may seem at first sight that canonical 
quantization rules will yield the "usual Schrodinger 
equation." That is incorrect! In fact, only in the case 
g ij :::::: constants are the canonical quantization rules 

[p i ,qj] :::::: - ino i
j 

unambiguous and independent of coordinate transfor-
mations (if they maintain g ij :::::: const). If R ,c 0, 
"canonical quantization rules" are ambiguous. 
(d) The limit Pi 0 of both equations give2 the same 
results as classical mechanics, since the term 
- n2R/6 is an equivalent potential energy and app-
roaches 0 as Pi approaches O. 
(e) If R ,c 0, one can always embed the coordinate 
space ql '" qN as a curved subspace in a Euclidean 
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space S of larger dimenSion. Does canonical quanti-
zation in the larger space S lead to a unique Schro-
dinger equation in the subspace? The answer to this 
question is no. To analyze this question, one would 
have to investigate first the constraint to be applied 
to the system in S so as to restrict the motion to the 
subspace. This constraint is to confine motion to a 
thin layer of "thickness" t::.. (q 1 .•• qN) around the sub-
space and then to approach the limit t::.. O. In classi-
cal mechanics any nondissipative constraint would 
yield the same result in the limit t::.. --) O. The limit-
ing trajectories would satisfy the Lagrangian equa-
tions for the q's, and one need not concern oneself 
with the larger space S. In particular the thickness 
t::.. can depend on ql .•• qN. E.g., one could have 

t::.. :::::: A(ql .•. qN) E + O(E2), (21) 

and take the limit E O. 
In quantum mechanics, however, the constraint pro-
duces a zero point energy. The limit for the Schro-
dinger equation would then depend on precisely how 
the limit t::.. 0 is taken. If one takes (21), and the 
fact that A ,c const, the Schrodinger equation would 
acquire an infinite term a(AEt2 which varies wildly 
over the q's. Consequently, the Schrodinger equation 
approaches no definite limit. If, on the other hand, 
one takes A :::::: const, then everything depends on the 
higher order terms in O(E2) in (21). 

(f) To summarize, for a case R ,c 0, canonical quan-
tization does not produce a unique Schrodinger equa-
tion, and embedding the system in a higher-dimen-
sional Euclidean space would not help to produce a 
unique Schrodinger equation. The correspondence 
limit also does not uniquely determine a Schrodinger 
equation. Feynman's path integration formulation of 
quantization, however, does produce a unique equation, 
which is Eq. (20) above. The "usual Schrodinger 
equation" appears to be foundationless. 
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APPENDIX A 
In this appendix, we want to expand S(q(t + E), q(t» as 
a power series of t::..q. The equations of motion are 

". 1 (ag mj ag ma ag a j). '. (AI) g . qJ :::::: _____ + __ ._ - -- qaqJ 
mJ 2 aqa aqJ aqm 

or qk:::::: -1:/3\ gagB. (A2) 

Via Eq. (A2) it is not very difficult to prove 
d 1 '. '. - ('2g .. q'qJ):::::: O. dt 'J 

(A3) 

That is, 

S(q(t + E), q(t» :::::: J/+€ Ldt 
:::::: [t gij(q(l + E» qi(t + E) qJ(t + E)l E. (A4) 

Now if we know qi (t + E) as a series of t::..q, we know 
S(q(t + E), q(t». In order to find out qi(t + E), we need 
·q·k. From Eq. (A2), we find 
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';i k = - (o!r 1:/3 - 21m
k
/3\ 1;D qaq8qr • (A5) 

Now for small E and I:; El/2, we can write 

qi(t) = qi(t + E)- Eqi(t + E) + (E2/2!)'qi(t + E) 

- (E3/3!) qi (t + E)+ ..• (A6) 
or 
qi(t) = qi(t + E) _ Eqi (t + E) _ E2 )/ i (qaqB 

2! 0!J3\ 
+ E3 (_0 j it _ 2 i 11 m ()qaqBqr + .... 

3! oqY /aJ3 lm/3\ ay \ 
(A7) 

From Eq. (A 7) we get 

(ji(t + E) = b.qi _ j i { 
E 2E lmn\ 

+ (-; 1 i t + j it j a t) m b.q I + • •• • 
6E oq mn\ tall /mn\ (A8) 

Substituting Eq. (A8) into Eq. (A4), we get 

S(q(t + E), q(t» = iE gij [b.qib. qJ 

+ ! lip j 
4 mn,IO!J3\ 

+ 1 ( 0 j i (+ j i/ \ a .• J. 
3 oql/mn\ /0'11 /mn\ 

(A9) 
This is Eq. (6). 

APPENDIX B 
In this appendix, we calculate the coefficients of 1/1, 
01/l/oq, 021/1/aqoq by using Eqs. (12)-(14). 

(a) 

(b) 

0
2

1/1 : J exp 
oqmaqn 2A 2nE 

= (irrliE)N/2 (iIIE) gmn (B1) 
A 2 

a1/l : ! J exp (_1_ g i' fi 
aqn A 2nE J 2liEJ 

x g \ i ( 
'J (O!{J\ 

1 J' ( i ') afi ' + - exp - _, 
A 2nE J aq' 

= (_ ilIE) _ g" gnjga8 (irrnE )N/2 1 1 i \ { 
A 2 af3 IJ 

+ gnagjfJ + gnB gja} + (irrnE )N/2 (iliE )gna 1 /3 I 
A af3\ 

= (_ ilIE) 1:/3\ + gna 

+ (irrIIE)N/2 (ifiE)gna \ {3 ( 
A /a/3\ 

= (_ ilIE) ga61:/3\ 

_ (i7T1IE )N/2 ('''' ) 1 1 0 (V- mn) _ ZrtE - - -- g g . 
A 2 oqm 

(B2) 

In obtaining Eq. (B2) we use the identities 

(B3) 

and 
ag mn ag __ =_gmagn8 (B4) 

aqk aqk 
Equation (B4) can be derived from 

_0_ (g gna) =_a_ (on) = o. (B5) 
oqk ma oqk Tf' 

(c) lJ,. 

(1) ! J exp g ij Ii 
A 2nE } 

= (inl'iE)N/2 (B6) 
A 

(2) !J X Ii A 2IIE IJ 

X [_i_ gi j i ( j m 
2IIE Y la/3\ (om\ 

+ g (ai3yomn)(. (B7) 

In these equations, (a 1,01 2 ..• 01 2 m) stands for (gal a2 .. 
ga2m-la2m) + terms with other possible permutation 
of (01 1 01 2 ••• a 2m ). 

The term 

(a/3yomn) 

= t g [gmo (ai3yn) + gno (/3yom) 

+ga6(mnyf3) +g/3o(mnay) +gyo(mna/3)} 

= tgiy ia
i
J3\ (ai3yo) + igiy (a/3yo) 

+ igiy \ (O!i3yo) + igiy \ (a/3yo) 

+ igij \ i 1 j j 1 (ai3yo). 
/a/3\ /yo\ 
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Thus Eq. (B7) becomes + 1 (I {3 (I a (+ a I (3 t) (mn)l 
2 Im{3\ Ina\ aq" Im{3\ J 

(a{3yo) (B8) 
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In a recent paper the author showed how multiplicative stochastic processes lead to a potentially comprehensive 
theory for nonequilibrium phenomena. In this paper an" H theorem" is proved from results obtained using 
multiplicative stochastic processes. 

INTRODUCTION 
In another paper,1 the theory of multiplicative stoch-
astic processes was explained, and it was shown how 
such a mathematical theory leads to a formalism for 
nonequilibrium thermodynamics: In this paper the 
thermodynamical" H function" will be introduced, and 
a proof of an "H theorem" will be presented. 

RECAPITULATION 
The Schrodinger equation for nonrelativistic quantum 
mechanics may be written in matrix form as 

(1) 

where M aa' = M:a , which is the condition of Hermit-
icity, C:(t)Ca(t) = 1, which is the condition of 
conservation of total probability. The Hermiticity of 
Maa , in (1) is necessary and sufficient for the con-
servation of total probability. Suppose that a fluctua-
ting contribution to the Hamiltonian is considered. 
Then (1) becomes 

. d t-=tCa(t) = + L.J Maa,(t)Ca,(t), 
Ul a' at 

(2) 

where Maa,(t) = M:'a(t), and the follElwing properties 
hold for the averaged moments of Maa,(t)l: 

(Maa, (t) = 0, 

(Maa,(t)MSs,(s) = 2Qaa'SS,o(t - s), 

(3) 

(4) 

(M""(tl)···M,, " (t2n-l)=0 forn=I,2, ... , .-1 1 '-2n-1 2n-1 

(M" " (tl)·· ·M" v (t2n) .-1 1 '-2 n 2 n 

_ 1 IT (M . " . 2nn! pE s2n j=l I'p(2J-I) p(2j"1) 

x (tp(2j-l))Ml'p(2j)Vp(2j)(tp(2 j ))) 

- 2:nl tl 2QI'P(2j-l)"P(2j-I)l'p(2j)"P(2j) 

x o(tp(2j-ll - tp(2j))' 
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( 5) 

(6) 

where S2n is the symmetric group of order (2n)! The 
properties given by (3)-(6) are those appropriate for 
a purely random, Gaussian, stochastic matrix. 
A denSity matrix representation for the Schrodinger 
equation is obtained in terms of the density matrix 
PaS' which is defined by 

(7) 

If LaSa'S' and Lasa'S,(t) are defined by 

LaSa'B == 0aa,MS8' - 15 BB,M:a" 
- - - -* L aBa'B' (t) = 15 aa,MBB'(t) - 151313 , Maa, (t), 

(8) 

then Eq. (2) may be used to directly verify 

.d -t dtPaB(t) = L.J L.I [LaBa'B' + LaSa'B,(t)]Pa,s,(t). 
a' B' 

(9) 

This is the density matrix equation. By averaging 
over the stochastic contribution by means of pro-
perties (3)-(6), an equation for the averaged density 
matrix, (PaB(t), may be obtained, although only after 
significant computation l : 

ddt (PaS(t) = -
a! B' 

- (10) 
a' B' 

The matrix RaSa'B' which appears in (10) is defined 
byl 

R aBa •B·= 0aa·6QBeeB' + °BB·6 Qeaa'e e e 
- QBB'a'a - Qa'aSB" (11) 

It is also provable that for arbitrary complex mat-
ricesXall , 

( 12) 

(13) 

Conditions (12) and (13) lead to irreversible behavior 
in (10) with the equilibrium state being proportional 
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