
Chapter 7

Bulk Nuclear Properties and Nuclear

Matter

The universe contains a remarkably wide variety of atomic nuclei, with mass numbers A (the sum of
the numbers of proton Z and the neutron N) up to 250. While there are many interesting properties
details that differentiate these nuclei from each other, there is also a powerful set of systematic
trends and general properties that provide an important and useful framework for understanding
the basic structure of nuclei. There properties are essentially determined by the so-called mean-field
approach, in which one nucleon experiences a field which is the sum of the interaction with many
other nucleons. This mean field property is a reflection that the density of the nucleons are relatively
low and the interaction between the nucleons are relatively week. As such, the nucleon-nucleon
correlation is small. The Hartree-Fock Mean field theory is main theoretical tool for dealing with
systems with little correlations. Beyond that, the nucleon-nucleon correlations can be calculated
using Bethe-Goldstone equations. These equations differ from free-space Schrodinger equation in
that many-body Pauli blocking effects are taken into account. These theoretical tools are best
illustrated in the example of nuclear matter in which the Coulomb potential is turned off and there
are equal number of protons and neutrons. The finite size effect of the nuclear system will be taken
up in the next Chapter.

7.1 Nuclear Radii and Densities

One of the first relevant properties of the nucleus was determined by Rutherford: the radius is only
of order a few fm. The next major step was the use of electron scattering to accurately characterize
the charge distribution of nucleons and nuclei. This technique was pioneered by Hofstadter in the
1950’s. In Chapter 4, we considered the elastic scattering of electrons from nucleons. For spinless
(i.e., J = 0) nuclei, elastic electron scattering is even simpler. The nuclear matrix element for this
process is just 〈0|Ĵµ|0〉, where Jµ is the electromagnetic current operator. For elastic scattering
from a J = 0 nucleus, we have

〈0|Ĵµ|0〉 = δµ0〈0|ρ̂|0〉 , (7.1)

so that only the charge operator contributes. The electron scattering cross section is then

dσ

dΩ
= σMott · |F (~q)|2 ; (J = 0 → J = 0) (7.2)
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where σMott is the cross section on a pointlike nucleus. An example of this cross section is shown
in Figure 7.1.

Figure 7.1: Cross section for elastic electron scattering from lead as a function of momentum
transfer q along with a theoretical calculation.

The form factor F (q) is directly related to the Fourier transform of the nuclear charge distri-
bution. First define

ρ(q) ≡
∫

〈ρ(x)〉e−i~q·~xd3~x , (7.3)

where for a spin 0 nucleus 〈ρ(x)〉 is spherically symmetric. Then use the identity

e−i~q·~x =
∞∑

l=0

(2l + 1)iljl(qr)Pl(cos θ) (7.4)

and the definition

j0(qr) =
sin qr

qr
. (7.5)

Only the l = 0 term survives due to the spherical symmetry of 〈ρ(x)〉

ρ(q) =
4π

q

∫ ∞

0
ρ(r) sin(qr)rdr . (7.6)
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We can then expand sin(qr) and obtain the relation:

ρ(q) =
4π

q

∫

ρ(r)

[

qr − 1

6
q3r3 + ...

]

rdr (7.7)

= 4π

∫

ρ(r)r2dr − 1

6
q2
∫

r2ρ(r)4πr2dr + ... (7.8)

= Ze(1 − 1

6
q2〈r2〉 + ...) (7.9)

We should note two important properties of ρ(q):

lim
q→0

ρ(q) = Ze (total charge) (7.10)

lim
q2→0

dF

dq2
=

1

Ze
lim

q2→0

dρ

dq2
= −1

6
〈r2〉 (7.11)

or

〈r2〉 = −6
dF

dq2

∣
∣
∣
∣
q2=0

(mean square charge radius) (7.12)

Figure 7.2: Charge density distributions for nuclei as determined from elastic electron scattering
along with theoretical calculations.
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The general strategy is to measure ρ(q) and Fourier transform to obtain ρ(r). As shown in
Figure 7.2, one finds a nuclear charge distribution that is well described by a Wood-Saxon form

ρ(r) =
ρ0

1 + e(r−R)/a
. (7.13)

The basic properties of this distribution are the following.

• (a)ρ0 ∼ 0.08 efm−3

• (b)c = r0A
1

3 ; r0 ∼= 1.2fm.

Therefore, as one adds nucleons the nuclear volume simply grows with the number of nucleons in
such a way that the density of nucleons (per unit volume) is constant. That is, nuclei seem to
behave like an incompressible fluid of constant density. This property is very different than that of
atoms.

The elastic electron scattering probes the charge distribution of the protons. The neutron
distribution in the nucleus can be very different in principle. However, if one assumes that the
strong interactions dominate the nuclear structure and the isospin symmetry is good, the neutron
and proton distributions shall not be too different. The neutron distribution in a nucleus can be
measured in principle by parity-violating electron scattering with Z-boson exchanges, because the
neutral current charge of the proton almost vanishes.

7.2 Fermi Gas Model

The fact that the nucleon density is approximately constant throughout the nuclear interior implies
that it is not energetically more favorable to be in one location compared to any other. Thus, we
expect that the mean potential will be approximately constant throughout the nuclear volume. We
may then approximate the nucleus as a free Fermi gas (i.e., non-interacting fermions) confined to
a well which approximates the nuclear volume. The kinetic energies associated with localization
to the nuclear volume (∼ few MeV) are large compared to room temperature Troom = 1

40 eV, so it
is safe to use a degenerate Fermi gas (T = 0) for temperatures below about ∼ 109 ◦K. (Such large
temperatures are in fact encountered in stellar environments.

We are allowed to place 4 particles (spin-isospin) in each orbital. The density of available states
is then given by the expression

dN = 4 × d3p

(2πh̄)3
Ω (7.14)

= 4 × 4πp2dp

(2πh̄)3
Ω (7.15)

where Ω is the nuclear volume. If we integrate to the highest filled orbital at momentum pF , we
then count the total number of nucleons

A =
16πΩ

8π3h̄3

∫ pF

0
p2dp =

2Ω

3π2h̄3 p
3
F =

2Ω

3π2
k3

F . (7.16)

Then the nuclear density is

ρ =
A

Ω
=

2

3π2
k3

F . (7.17)
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We can compute the average kinetic energy of the nucleons as follows.

〈T 〉 =
1

2MN

∫ pF

0 p4dp
∫ pF

0 p2dp
=

1

2MN

p5
F/5

p3
F/3

(7.18)

=
3

5

p2
F

2MN
(7.19)

We can numerically determine the Fermi momentum pF by using the known value of nuclear
density (determined from electron scattering charge densities). Recall that the nuclear radius is
given by R = 1.2 fm A1/3, which implies

Ω =
4π

3
(1.2)3A . (7.20)

Thus we may evaluate the nuclear density as

ρ =
3

4π(1.2)3
fm−3 (7.21)

= .14 fm−3 (7.22)

= 2.34 × 1014 g/cm3 . (7.23)

We then use

kF =

(

3π2ρ

2

)1/3

fm−1 (7.24)

to obtain
pF = h̄kf = 250 MeV/c . (7.25)

(This value agrees very well with the analysis of F (pz) distributions determined from quasielastic
electron scattering measurements!) We can now numerically evaluate the average kinetic energy as

〈T 〉 =
3

5

(h̄kf )2

2Mn
=

3

5

(197.3 × 1.3)2

2 × 938
(7.26)

= 21 MeV (7.27)

and the maximum kinetic energy is then

Tmax =
5

3
〈T 〉 = 35 MeV. (7.28)

We note that, under laboratory conditions, the zero temperature limit is certainly valid.
Clearly the depth of the well has to be larger than 35 MeV. If a nucleon has binding energy of

order 15 MeV or so, as in nuclear matter, the depth of the well will be about 15 + 35 = 50 MeV.

7.3 Independent Particles and Quasi-Elastic Electron Scattering

In probing the nuclear structure with electromagnetic probes, the spatial resolution of the virtual
photon is governed by the momentum transfer ~q. For momentum transfers up to several hundred
MeV, elastic and inelastic scattering from the nucleus can be used to study properties of the ground
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state (such as the charge distribution) and low energy excitations. At higher momentum transfers
up to 1-2 GeV/c, the dominant process involves the interaction of the virtual photon with an
individual nucleon in the nucleus. (The amplitude for coherent interaction with several or many
nucleons decreases rapidly in magnitude at these higher momentum transfers.) The simplest process
of this type involves the quasifree knockout of a nucleon, where the struck nucleon is not internally
excited but rather recoils elastically. This process is known as “quasielastic” scattering and is a
widely used tool for the study of the properties of the nucleon in the nuclear medium.

The major effect of the nuclear medium on the struck nucleon is the momentum associated with
the localization of the initial state. Thus we consider the case of electron scattering from an initial
state nucleon which is in motion in the laboratory frame. Let the initial nucleon momentum be
given by ~p = (pz, p⊥) where

pz ≡ ~p · ~q
|~q| . (7.29)

Then we still have −q2 = 2p · q, since this is a Lorentz invariant statement, so

−q2 = 2p · q = 2mν − 2pz|~q| (7.30)

where we have ignored the (rather small) effect of the kinetic energy of the initial nucleon and set
its energy equal to its mass (i.e., E = m). Thus, the electron energy loss ν is shifted by

ν = − q2

2m
+

|~q|
m
pz (7.31)

= ν0 +
|~q|
m
pz

(

1 +
2k

m
sin2 θ

2

)−1

(7.32)

∼= ν0 +
|~q|
m
pz . (7.33)

So to lowest order in pz we have the relation dν
dpz

= |~q|
m or dpz

dν = m
|~q| . Now let’s write the elastic

cross section
d2σ

dΩdν

∣
∣
∣
∣
el

=
dσ

dΩ

∣
∣
∣
∣
el
· δ(ν + q2/2m)

︸ ︷︷ ︸

dP
dν

=probability/unit ν

. (7.34)

Then we can generalize this expression to the quasielastic cross section

d2σ

dΩdν

∣
∣
∣
∣
QE

=
dσ

dΩ

∣
∣
∣
∣
el
× dP (pz)

dpz

dpz

dν
︸ ︷︷ ︸

dP
dν

(7.35)

Let’s assume the nucleus (spherically symmetric) has a momentum distribution n(p):
∫

d3p n(p) = 4π

∫ ∞

0
p2dp n(p) = 1 . (7.36)

Now p2 = p2
z + p2

⊥ and for fixed pz we have 2p dp = 2p⊥ dp⊥ and

dP

dpz
=

∫ ∞

0
n(pz, p⊥)d2p⊥ = 2π

∫ ∞

0
n(pz, p⊥) p⊥ dp⊥ (7.37)

= 2π

∫ ∞

pz

n(p) p dp ≡ F (pz) . (7.38)
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If we then recall that all of the nucleons in a nucleus are equivalent (they are identical fermions
and the wave function is totally antisymmetrized) then we can sum over all the nucleons and use
dpz

dν = m
|~q| to obtain the quasielastic cross section formula:

dσ

dΩdν

∣
∣
∣
∣
QE

=
dσ̄

dΩ

∣
∣
∣
∣
el
· m|~q| F (pz)

︸ ︷︷ ︸

measure!!

(7.39)

where we have defined the effective nucleon elastic cross section as

dσ̄

dΩ

∣
∣
∣
∣
el
≡ Z · dσ

dΩ

∣
∣
∣
∣
proton

+N
dσ

dΩ

∣
∣
∣
∣
neutron

. (7.40)

Thus one can measure the ν dependence of the quasielastic cross section and use the known nucleon
elastic cross sections to determine the “longitudinal momentum distribution” of the nucleons F (pz).
This is a basic property of the nucleon orbitals in the nucleus.

Figure 7.3 shows a sample of quasielastic electron scattering data for a variety of nuclei analyzed
for the longitudinal momentum distribution F (pz). The extraction of F (pz) for a variety of nuclei
for 2 < A < 200 indicates a remarkable property. For all nuclei with A > 12 one finds a typical
mean momentum for the initial nucleon of about 150 MeV.

This is consistent with the view that these nuclei all have about the same average density as
determined from elastic electron scattering. A very simple model assumes that the nucleons are a
free Fermi gas confined to a spherical volume of radius R. Then the density of nucleons is related to
the Fermi momentum pF , and a constant pF is indicative of a constant nucleon density. In fact, the
momentum distribution of a free Fermi gas is quite simple and can be used to obtain an analytic
expression for the quasielastic scattering cross section using the above formulae.

More detailed information about the initial nucleon in quasielastic electron scattering can be
obtained by measuring the momentum of the struck nucleon in the final state. (This is most
practical for protons, but neutron experiments are becoming feasible also.) The recoiling nucleon
has some probability to further interact with the residual nucleus, but one can account for this
effect by using “distorted” waves for the final nucleon. In any case, the assumption that there is
no final state interaction is not unreasonable at larger recoil momenta (> 500 MeV/c) and we will
proceed using this ansatz.

The determination of the final momentum of the nucleon allows us to solve uniquely (using
energy and momentum conservation) for the initial nucleon momentum and energy. The recoiling
residual nucleus A − 1 has very little kinetic energy so we neglect it here (one can include it in a
more detailed analysis).

~p = ~p ′ − ~q (7.41)

E = E′ − ν (7.42)

The initial energy E contains the binding energy of the struck nucleon. Therefore, one can select
the initial binding energy of the nucleon by selecting scattering events with the desired value of E.

An example of data from a quasielastic (e, e′p) experiment is shown in Figure 7.4. The distri-
bution of binding energies shows a great deal of structure with many peaks associated with specific
bound state orbits. Each peak has a “momentum distribution” corresponding to the squared
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Figure 7.3: Quasielastic electron scattering from several nuclei showing the universal nature of the
peak corresponding to single nucleon knockout kinematics, and the scaling behavior as a function
of q2.

momentum-space wave function for that particular bound state orbital. Analysis of these dis-
tributions leads to the inescapable and remarkable conclusion that the bound nucleons are well-
described by motion in a potential well the size of the whole nucleus. (The Fourier transform of
the momentum-space wave function is in fact the coordinate-space wave function that corresponds
to the spatial distribution for that bound nucleon.)

The results from such recent (e, e′p) experiments support many decades of phenomenological
development of nuclear theory based on the assumption that nucleons move freely throughout the
nuclear volume in a “mean potential” generated by the average effect of all the other A−1 nucleons.
The validity of this picture is, at first glance, rather surprising given the short-range nature of the
force between nucleons which might seem to favor a view where the nucleons “rattle” around by
bouncing off each other in distances short compared with the nuclear radius. However, quantum
mechanically confining the nucleons to such smaller effective volumes would entail a large increase
in the kinetic energy of the nuclear system. Therefore, the lowest energy state is one with larger
spatial orbitals generated by an effective average potential. The theoretical description of dense
strongly interacting matter as quasifree particles in a potential well is a very interesting tale in
quantum many-body physics which we will study in some more detail later.

We have already discussed how the nuclear force between nucleons saturates very quickly due
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Figure 7.4: Cross section data for the 208Pb(e, e′p)207Tl∗

reaction displaying the orbitals of the nucleon for the different final states.

to the short-range nature of the force. This leads to the approximately constant binding energy per
nucleon observed for all but the very lightest nuclei. We have also seen that there is considerable
evidence that the nucleons occupy orbitals that fill the complete nuclear volume even though the
range of the nuclear force is smaller than the nuclear radius. This can be understood as due to the
Pauli-blocking of already filled states. Since there are no empty orbitals at low energies, there is
no opportunity to scatter and change orbitals. Thus we are led to the picture that the nucleons
can move under the influence of a mean potential generated by the collective effect of all the other
nucleons. In addition, the nucleons predominantly occupy orbitals that are the eigenstates of such
a mean potential.

It is possible to construct the mean potential from the nucleon- nucleon potential using quantum
many-body theory, and we will study this later. However, we will find it instructive to first adopt a
very simple mean potential in order to explore the consequences of this picture. We will then be able
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to add some corrections and develop a very successful formula for the binding energy systematics
of nuclei.

7.4 Nuclear Binding Energy and Bethe-Weizsäcker formula

Another remarkable property of atomic nuclei (also very different from atoms) is that the binding
energy per nucleon is approximately constant at 8 MeV per nucleon (Figure 7.5. If one adds a
nucleon to the nucleus and it interacts with all the other nucleons simutaneously, then the total
binding energy would grow as A2, and the binding energy per nucleon would grow in proportion
to A. The fact that the binding energy per nucleon is constant is an indication that only nearest
neighbor interactions are significant. Each nucleon that is added to the nucleus sees binding effects
from its nearest neighbors only, which contribute some fixed amount (in this case 8 MeV). Therefore,
we conclude that nucleons only interact with their nearest neighbors and, from the constant nuclear
density, this nearest neighbor distance is only of order 1 fm.

Figure 7.5: Binding energy per nucleon for stable nuclei as a function of nuclear mass number A.
The binding energy saturates at the value B/A ∼ 8 MeV/nucleon. The most stable nucleus is 56Fe.

Next we consider corrections to the Fermi gas model developed above. These corrections account
for the potential energy of the nucleons, the surface of a finite-sized nucleus, the Coulomb energy
associated with the protons, the implications of isospin symmetry, and the tendency for nucleons
to form pairs with J = 0. These considerations will lead to the Bethe-Weizsäcker formula for the
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binding energy of a finite nucleus of A nucleons and atomic number Z

B(A,Z) = aVA− aSA
2/3 − aC

Z(Z − 1)

A1/3
− aA

(N − Z)2

A
+ ∆Epair . (7.43)

The “pairing energy” is given by

∆Epair = δ · aP

A1/2
; δ =

{ 1 even − even
0 even − odd
−1 odd − odd

(7.44)

and the five terms with their empirically determined constants are

Volume term: aV = 15.85 MeV
Surface term: aS = 18.34 MeV
Coulomb term: aC = 0.71 MeV
Symmetry term: aA = 23.21 MeV
Pairing term: aP = 12 MeV

Table 7.1: Parameters in Bethe-Weizsäcker formula.

Volume Energy

This term arises from both the kinetic and potential energy associated with bulk volume of the
nuclear system

〈T + V 〉 = 〈T 〉 + 〈V 〉 . (7.45)

The kinetic energy is that of the free Fermi gas that we have already considered:

T = A · 〈T 〉 =
3

5

p2
F

2MN
A =

3

5

h̄2

2MN

(

3π2ρ

2

)2/3

A . (7.46)

For the potential energy, we consider only a central potential VC between nucleons (other potential
energy contibutions associated with the spins will tend to yield an average central potential when
one integrates over all directions).

V =
1

2

∑

i, j
i 6= j

∫

ρ(~ri)ρ(~rj)VC(rij)d
3rid

3rj (7.47)

=
A(A− 1)

2

∫

ρ(~r1)ρ(~r2)VC(r12)d
3r1d

3r2 (7.48)

where we have used the fact that all nucleons are equivalent (the total wave function is antisym-
metrized) and multiplied the potential energy of two nucleons by the number of pairs A(A− 1)/2.
The nucleon density will be considered to be a constant over the nuclear volume Ω

ρ(~ri) ≡ prob/vol to find the ith particle at ~ri (7.49)

∼= 1

Ω
. (7.50)
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Since VC is short-ranged and the nuclear medium is of uniform density, the integral of VC over the
position of nucleon 2 is a constant independent of the location of nucleon 1:

∫

VC(r12)ρ(~r2)d
3~r2 ∼= 1

Ω

∫

VC(~r)d3r (7.51)

≡ V̄C

Ω
(7.52)

Then the total potential energy can be written as

V ∼= A2

2Ω
V̄C (7.53)

=
1

2
AρV̄C (< 0 for binding with attractive forces). (7.54)

Therefore, we have

aV = −T + V

A
∼= c2ρ− c1ρ

2/3 (7.55)

with positive constants c1 and c2 associated with the kinetic energy and potential energy contribu-
tions, respectively.

From such a simple relation, we would predict a rather surprising property of nuclear matter.
At large enough ρ, the c2 term dominates aV , and then aV increases as ρ increases. Thus, if the
nuclear density becomes high enough it will be energetically favorable for the nucleus to increase its
density without limit. Thus we are led to the unfortunate conclusion that nuclei should collapse.
Since this obviously does not occur in nature, there must be some additional effect. It turns out
that the nuclear force actually becomes strongly repulsive at short distances. This implies that c2
cannot be assumed to be constant, but in fact decreases and becomes negative at high ρ. This
repulsive core of the nuclear interaction is then responsible for stabilizing nuclear matter at finite
density.

Surface Energy

There can be 2 contributions to the surface term. One is the finite volume effect on the density of
states (“finite” Fermi gas) which affects the kinetic energy. The other is due to the finite volume
effect on the potential.

We first consider the surface correction to the kinetic energy in the Fermi gas. For calculational
convenience we will use a cubical box for our Fermi gas. (The shape of the volume will only change
the result by a simple geometric factor, but the general form of our result will be correct for any
simple shape.) Note that the integral we previously used for the density of states included states
with kx = 0, ky = 0, and kz = 0. For a cube, these are not allowed since the wave functions of
these orbitals

ψ = sin(kxs) sin(kyy) sin(kzz) (7.56)

will vanish. Now let’s count the number of states with kx = 0:

dNx = 4 × L2dkydkz

(2π)2
=

4S 2πkdk

6(2π)2
(7.57)

=
S

3π
kdk (7.58)
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where S = 6L2 is the total surface area of the cubical volume. Therefore the total number of states
should be modified by

dN =

(
2Ω

π2
k2 − S

π
k

)

dk (7.59)

where we have subtracted three times dNx to account for ky = 0 and kz = 0 states also. Then we
repeat the Fermi gas calculations with this correction included:

A =

∫ kF

0

(
2Ω

π2
k2 − S

π
k

)

dk (7.60)

=
2Ω

3π2
k3

F − S

2π
k2

F (7.61)

=
2Ω

3π2
k3

F

(

1 − 3π

4

S

Ω

1

kF

)

(7.62)

〈T 〉 =
h̄2

2MN

∫ kF

0

(
2Ω
π2 k

4 − S
πk

3
)

dk

A
(7.63)

=
h̄2

2MN

[
2Ω

5π2
k5

F − S

4π
k4

F

]/

A (7.64)

=
h̄2

2MN

(
2Ω

5π2
k5

F

)[

1 − 5πS

8Ω

1

kF

]/

A (7.65)

∼= 3

5

h̄2k2
F

2MN

[

1 +
π

8

S

Ω

1

kF
+ · · ·

]

(7.66)

We now use the approximate expression for the ratio of surface area to volume:

S

Ω
∼= 4πr20A

2/3

4π
3 r

3
0A

∼= 3

r0A1/3
(7.67)

and obtain

〈T 〉 =
3

5
EF +

9

40
EF

π

r0kF
· 1

A1/3
. (7.68)

We therefore find the following value for the kinetic energy part of aS :

aS(T ) =
9

40
EF

π

r0kF
≈ 18 MeV. (7.69)

We should remember that we expect this to be valid only to within a geometric factor like 2 or 3.
For the potential energy term we can use a simple geometric analysis. The volume associated

with the nuclear surface is a shell of thickness approximately equal to the range of the nuclear force
r1

dΩ ∼= 4πR2r1 . (7.70)

Then the potential energy is reduced as follows:

V ∼= 1

2
AρV̄C

(

1 − dΩ

Ω

)

(7.71)

∼= 1

2
AρV̄C

(

1 − 3r1
R

)

(7.72)

∼= 1

2
AρV̄C − 3

2
ρ
r1
r0
A2/3V̄C (7.73)
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where we have used R = r0A
1/3 for the nuclear radius. Therefore, aS(V ) ≈ −3

2ρ
r1

r0
V̄C (>0 for an

attractive force).
For a simple square well potential it is easy to show that

V =
1

2
AρV̄C

[

1 − 9

16

r1
R

+
1

32

(
r1
R

)3]

. (7.74)

Coulomb Energy

The charge density is given by

ρq =
Z

A
ρe =

Ze

Ω
(7.75)

which then yields the following for the Coulomb energy

Vc =
1

2

∫

ρ2
q

d3r1d
3r2

r12
(7.76)

= ρ2
q

∫ R

0

4πr3

3

4πr2dr

r
(Energy to assemble charge distribution) (7.77)

=
4π

3
ρ2

q · 4π
R5

5
(7.78)

=
3

5

Z2e2

R
= 3

5
Z2e2

r0
A−1/3 . (7.79)

Thus we find the expression for aC

aC =
3

5

e2

r0
≈ 0.71 MeV. (7.80)

Symmetry Energy

The nuclear force prefers T = 0, so nuclei with Z = N are expected to have extra stability and
so maximize the binding energy B. Let’s assume two Fermi gases consisting of Z protons and N
neutrons. We will allow the relative number of protons and neutrons to vary (i.e., Z 6= N), but we
will keep A = Z + N fixed. Now for the two Fermi gases we repeat the analysis as follows. First
we define the densities of the two components

ρ0 =
A

Ω
; ρp =

Z

A
ρ0 ≡ xρ0; ρn =

N

A
ρ0 = (1 − x)ρ0 . (7.81)

Then we write the total kinetic energy for symmetric (Z = N) matter as

T0 = A · 3

5

h̄2

2MN
(3π2ρ0/2)

2/3 . (7.82)

For Z 6= N we have the following

Tp = Z · 3

5

h̄2

2MN
(3π2ρp)

2/3 = A · 3

5

h̄2

2MN
(3π2ρ0)

2/3x5/3 (7.83)

Tn = A · 3

5

h̄2

2MN
(3π2ρ0)

2/3(1 − x)5/3 . (7.84)
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The total kinetic energy is the sum of the two components

Tp + Tn = 22/3T0[x
5/3 + (1 − x)5/3] . (7.85)

We then expand about x = 1
2 : δx ≡ x− 1

2 = Z−N
2A .

x5/3 =
1

25/3
+

5

3

1

22/3
δx+

10

9
21/3 δx

2

2
+ · · · (7.86)

(1 − x)5/3 =
1

25/3
− 5

3

1

22/3
δx+

10

9
21/3 δx

2

2
+ · · · (7.87)

The kinetic energy is then given by

Tp + Tn = 22/3T0

[
2

25/3
+

20

9
· 1

22/3
δx2

]

= T0 + 5
9T0

(

(Z−N)
A

)2

(7.88)

= T0 + aA
(N − Z)2

A
(7.89)

Thus we conclude that

aA =
5

9

T0

A
=

5

9
× 21 MeV = 11.5 MeV. (7.90)

There should also be some contribution from potential energy, but clearly this effect associated
with the asymmetry of Fermi energies already qualitatively explains the empirical value of aA.

Pairing Energy

The pairing energy takes into account the tendency of like nucleons to form pairs (rather like Cooper
pairs in a superconductor) in order to lower the energy of the nuclear system. Thus if either the
neutron number N or proton number Z is even there is some additional binding of 12/

√
A MeV

relative to the case where both N and Z are odd integers. If both N and Z are even, then one gets
twice this value in additional binding energy.

Summary

Note that for a given A, EB(A, Z) is quadratic in Z. The Z which maximizes EB(A, Z) is deter-
mined by a combination of the Coulomb and symmetry energies. For small A, the symmetry term
dominates so N=Z is the maximum. At higher A > 40, the Coulomb term becomes important
and the maximum occurs at Z < N . This explains the trend of the “valley” of stable nuclei as
a function of Z and N . Typically, we find the pattern of energies shown in Fig. 7.6 for the cases
of even and odd A. Note that for even A there are 2 parabolas for even-even and odd-odd nuclei
separated by the pairing energy, while for odd A there is only one parabola.

Many properties of finite nuclei can be related to the simpler system of infinite nuclear matter.
The matter is assumed to consist of equal numbers of protons and neutrons, and we turn off the
Coulomb interaction. The formalism can also be modified and applied to finite nuclei.
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Figure 7.6: Ground state energies for A = 124 (left) and A = 125 (right).

7.5 Mean Field Theory and Independent Particle Approximation

As a first approximation, nuclei and nuclear matter are well-represented by independent particles
(nucleons) moving in a mean potential. The best such description is obtained by utilizing the
Hartree-Fock formalism.

The A-particle Hamiltonian is

Ĥ =
∑

i

p2
i

2M
+

1

2

∑

i6=j

V (~ri, ~rj) (7.91)

≡
∑

i

Ti +
1

2

∑

i6=j

Vij (7.92)

where the N -N potential has the symmetry

V (~ri, ~rj) = V (~rj , ~ri) → Vij = Vji . (7.93)

V (~ri, ~rj) may also depend on spin-isospin but we will omit such a dependence and assume a central
potential for simplicity.

Now choose an (in principle) arbitrary single particle Hamitonian ĥ(~ri, ~pi) ≡ ĥi, with eigenvec-
tors {φk(~ri)} and eigenvalues Ek:

ĥiφk(~ri) = Ekφk(~ri). (7.94)

The lowest energy (ground state) A-particle solution for the Hamiltonian Ĥ0 =
∑A

i=1 hi is the
Slater determinant

ψ(1, 2 . . . A) =
1√
A

∣
∣
∣
∣
∣
∣
∣

φα(1) φα(2) . . . φα(A)
φβ(1) φβ(2) . . . φβ(A)

...
...

...

∣
∣
∣
∣
∣
∣
∣

(7.95)
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where {Eα, Eβ, . . .} are lowest A energies. We will require

δ〈ψ|Ĥ |ψ〉 = 〈δψ|Ĥ |ψ〉 = 0 (7.96)

to obtain the best ψ to minimize 〈Ĥ〉 (Ĥ is the full Hamiltonian).
The most general variation we consider is a sum of 1-particle 1-hole states. Recall that the {φβ}

are a complete basis and divide the single particle states into two sets:

α, β, . . . = occupied states
a, b, . . . = unoccupied states.

(7.97)

Our variation on the wave function ψ is then

δψ =
∑

a, β

ηaβψ(a, β−1) (7.98)

and our variational minimization is

∑

a, b . . .
α, β, . . .

ηaβ〈ψ(a, β−1)|Ĥ |ψ〉 = 0. (7.99)

This will yield the Hartree-Fock condition:

〈a|T̂ |β〉 +
∑

α6=β

[〈aα|V |βα〉 − 〈aα|V |αβ〉] = 0 (7.100)

where one should note that the factor of 1
2 has disappeared since we keep the exchange term (2nd

potential term) explicitly.
As a simple example, it is useful to consider A = 2:

δψ = ηaβ · 1√
2

∣
∣
∣
∣

φα(1) φα(2)
φa(1) φa(2)

∣
∣
∣
∣+ ηaα · 1√

2

∣
∣
∣
∣

φa(1) φa(2)
φβ(1) φβ(2)

∣
∣
∣
∣ (7.101)

Since we can choose ηaβ and ηaα independently each term must vanish separately. Then we have

1

2
〈φa(1)φβ(2) − φβ(1)φa(2)|Ĥ |φα(1)φβ(2) − φβ(1)φα(2)〉 = 0 (7.102)

or
1

2
〈aβ − βa|

2∑

i=1

Ti +
1

2

∑

i6=j

Vij|αβ − βα〉 = 0 (7.103)

Then we use

〈aβ − βa|T1|αβ − βα〉 = 〈aβ − βa|T2|αβ − βα〉 = 〈a|T |α〉 (7.104)

〈aβ − βa|1
2
V12|αβ − βα〉 = 〈aβ − βa|1

2
V21|αβ − βα〉 (7.105)

=
1

2
[〈aβ|V12|αβ〉 + 〈βa|V12|βα〉 − 〈βa|V12|αβ〉 − 〈aβ|V12|βα〉](7.106)

= [〈aβ|V |αβ〉 − 〈aβ|V |βα〉] (7.107)
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to obtain

〈a|T |α〉 + [〈aβ|V |αβ〉 − 〈aβ|V |βα〉] = 0. (7.108)

For the general case A > 2 we obtain the Hartree-Fock (HF) condition

〈a|T |α〉 +
∑

β 6=α

[〈aβ|V |αβ〉 − 〈aβ|V |βα〉] = 0. (7.109)

We can satisy the HF condition by solving the HF equations:

T |φα〉 +
∑

β 6=α

[〈φβ |V |φαφβ〉 − 〈φβ |V |φβφα〉] = Eα|φα〉. (7.110)

Therefore, if we choose this as our single particle problem h|φα〉 = Eα|φα〉, then the |φα〉 will satisfy
the HF condition and represent the best single particle approx. solution to Ĥψ = Eψ, where H is
the full Hamiltonian. To see more clearly how to solve this problem, let’s rewrite the HF equations
in coordinate space

− h̄2

2M
∇2φα(r) +

∫

U(r′, r)φα(r′)d3r′ = Eαφα(r) (7.111)

where

U(r′, r) =
∑

β

{δ3(r − r′)

∫

φ∗β(r′′)V (r′′, r)φβ(r′′)d3(r′′) − φ∗β(r′)V (r′, r)φβ(r)} (7.112)

is best effective single particle potential.

Note that knowing the best U requires we that we already know {φα}, the solution! So we need
to solve the HF equations self-consistently:

• • Assume (guess) ĥ→ {φα}{Eα}

• • Pick lowest A Eα, use {φα} to obtain U

• • Now we have a new Ĥ0 =
∑
hi. Solve again for {φα}, {Eα} and iterate until the solution

converges.

Then the final answer for the ground state energy is

EHF = 〈ψ|Ĥ |ψ〉 =
A∑

α=1

〈α|T |α〉 +
1

2

A∑

αβ

[〈αβ|V |αβ〉 − 〈αβ|V |βα〉] (7.113)

=
∑

α

Eα − 1

2

∑

αβ

[〈αβ|V |αβ〉 − 〈αβ|V |βα〉]. (7.114)

Nuclear Matter in Mean Field Approximation

We now consider infinite nuclear matter in the independent particle approximation. The most
general single-particle Hamiltonian is

− h̄2

2M
~∇2φα(~r) +

∫

d3r′U(~r ′ − ~r)φα(~r ′) = Eαφα(~r) (7.115)
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where U may in principle depend on spin and isospin. The solutions are plane waves

φα =
1

Ω
ψα(S, T )ei

~kα·~r (7.116)

with a dispersion relation

−h̄2k2
α

2M
+ U(kα) = Eα (7.117)
[

U(kα) ≡ &intd3~r U(r) ei
~kα·~r

]

(7.118)

The A-body ground state wave function is the Slater determinant

ψ(1, 2, . . . A) =
1√
A!

∣
∣
∣
∣
∣
∣
∣

φα(1) φα(2) . . . φα(A)
φβ(1) φβ(2) . . . φβ(A)

...
...

...

∣
∣
∣
∣
∣
∣
∣

(7.119)

where {α, β . . .} are the lowest A single particle states. Even though it is a product of independent
particles, ψ(1, 2, . . . A) has important Pauli correlations. Consider the probability density to find
particle 1 at ~r1 and particle 2 at ~r2:

P (~r1, ~r2) ≡
∫

ψ∗(1, . . . A)ψ(1, . . . A) d3r3d
3r4 . . . d

3rA. (7.120)

=
1

A(A− 1)
· 1

2

∑

α, β

|φα(1)φβ(2) − φβ(1)φα(2)|2. (7.121)

We temporarily ignore spin, isospin, so φα = 1
Ωe

i~kα·~r. Then

P (~r1, ~r2) =
1

A(A− 1)
· Ω2

2Ω2

∫
d3kα

(2π)3
d3kβ

(2π)3

[

e−i~kα·~r1e−i~kβ ·~r2 − e−i~kβ ·~r1e−i~kα·~r2

]

(7.122)

×
[

ei
~kα·~r1ei

~kβ ·~r2 − ei
~kβ ·~r1ei

~kα·~r1

]

(7.123)

=
1

A(A− 1)
· 1

2

∫
d3kα

(2π)3
d3kβ

(2π)3

[

2 − ei(
~kα−~kβ)·(~r1−~r2) − e−i(~kα−~kβ)·(~r1−~r2)

]

(7.124)

=
1

A(A− 1)

∫
d3kα

(2π)3
d3kβ

(2π)3

[

1 − cos(~kα − ~kβ) · (~r1 − ~r2)

]

(7.125)

We now let ~r ≡ ~r1 − ~r2 and use

cos[(~kα − ~kβ) · ~r] = cos(~kα · ~r) cos(~kβ · ~r) + sin(~kα · ~r) sin(~kβ · ~r) (7.126)

Now the sine terms vanish ∫

d3k sin(~k · ~r) = 0 (7.127)

so

P (~r) =
1

A(A− 1)
× 1

(2π)6

{(4πk3
f

3

)2

−
[∫ kF

0
d3k cos(~k · ~r)

]2}

. (7.128)
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We can evaluate the cosine integral as follows.
∫

d3~k cos(~k · ~r) =
2π

2

∫

k2dk d(− cos θ)

[

eikr cos θ + e−ikr cos θ
]

(7.129)

= π

∫

k2dk

[
eikr − e−ikr

ikr
+
e−ikr − eikr

−ikr

]

(7.130)

=
4π

r

∫ kF

0
k sin(kr) dk (7.131)

=
4π

r

(

− d

dr

)∫ kF

0
cos kr dk (7.132)

= −4π

r
· d
dr

[
sin kF r

r

]

(7.133)

= −4π

r

[

−sin kF r

r2
+
kF cos kF r

r

]

(7.134)

=
4π

r3

[

sin(kF r) − (kF r) cos(kF r)

]

(7.135)

So we have the result

P (r) =
1

A(A− 1)

A2

Ω2

{

1 −
[

3

(kF r)2

(
sin kF r

kF r
− cos kF r

)]2}

(7.136)

=
1

Ω2

[

1 − F1(kF r)

]

. (7.137)

“Classically”, we would expect P = P1P2 = 1
Ω · 1

Ω , so F1 is a correction for Pauli principle correla-
tions.

Now consider the effects of spin-isospin. If one follows through the same analysis for spatially
symmetric (rather than antisymmetric) case, one find

P+(r) =
1

Ω2
[1 + F1(kF r)]; (7.138)

which applies for spin-isospin antisymmetric states. For a given state that is spatially symmetric
(and antisymmetric in spin-isospin) we require S = 1, T = 0 or S = 0, T = 1 which gives a total of
6 spin-isospin states. For a spatially antisymmetric state, we require S = 0, T = 0 or S = 1, T = 1
and there are 10 such states. Therefore, we can write

P (r) =
10

16
P−(r) +

6

16
P+(r) (7.139)

=
1

Ω2

[

1 − 1

4
F1(kF r)

]

(7.140)

The function F1(x) is shown in Figure 7.7. Note that there is a “wound” in the correlation function
for r < 2

kF
≈ 1.4 fm.

7.6 Pair Correlation in Nuclear Matter

The independent pair approximation is a correction to the independent particle treatment discussed
above. This approximation allows for 2-particle correlations but neglects correlations among clus-
ters of more than two particles.
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Figure 7.7: The correlation function F1 vs. x = kF r showing the wound at small x.

We want to know the effect of the real 2 nucleon interaction V12 on the true 2 particle wave
function ψ12. Let φ12 be a Slater determinant, and let’s define an operator Ĝ:

Ĝφ12 ≡ V12ψ12. (7.141)

Thus Ĝ is an effective potential that operates on single particle states to result in the same state
obtained by operating V12 in the true state ψ12.

• • As before, we have the single particle Schrödinger Equation (SE)

hφα = (T + U0)φα = Eαφα (7.142)

which generates the single particle states φα.

• • The two particle SE is

[Ĥ0 + V12]ψkl(1, 2) = Eklψkl(1, 2) (7.143)

where Ĥ0 = h1 + h2 and k, l correspond to φkφl which are best approximation to ψkl.

• • Now expand ψkl in eigenfunctions of H0:

ψkl = φk(1)φl(2) +
∑

a,b

aabφa(1)φb(2) +
∑

a

akaφk(1)φa(2) +
∑

a

aalφa(1)φl(2) (7.144)

where
a, b, c . . . unoccupied
k, l,m . . . occupied

}

are single particle solutions to H0. We rewrite this in a more

compact notation as

|ψkl〉 = |kl〉 +
∑

ab

aab|ab〉 +
∑

a

aka|ka〉 +
∑

a

aal|al〉. (7.145)



7.6. PAIR CORRELATION IN NUCLEAR MATTER 135

Now substitute in Equation 7.143 above and note that momentum conservation implies that

〈αβ|V12|kl〉 = 0 for α = k or β = l (not both). (7.146)

Thus we find that, for infinite nuclear matter, 1-particle 1-hole states do not contribute and we
have only 2-particle 2-hole states. Then contract with 〈ab| to obtain

(Ea + Eb)aab + 〈ab|V12|ψkl〉 = aabEkl (7.147)

aab =
〈ab|V12|ψkl〉
Ekl − Ea −Eb

(7.148)

|ψkl〉 = |kl〉 +
∑

ab

|ab〉〈ab|V12|ψkl〉
(Ekl − Ĥ0)

(7.149)

The amplitudes aab represent the population of 2-particle 2-hole states with both particles outside
the degenerate ground state. That is, both particles have E > EF and k > kF . The distribution
of occupied states is thus modified as shown in Figure 7.8.

Figure 7.8: Schematic occupation probability in momentum space for the Fermi Gas (solid) and
independent pair approximation (dashed).

Finally, we define the projection operator for initially unoccupied states

Q̂ ≡
∑

ab

|ab〉〈ab| (7.150)

and obtain the Bethe-Goldstone equation

|ψkl〉 = |kl〉 +
Q̂

Ekl − Ĥ0

V12|ψkl〉 (7.151)
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The effective interaction then becomes

Ĝ = V + V
Q

Ekl − Ĥ0

Ĝ. (7.152)

which has the important properties

• • depends on V

• • depends on kf (Ef ) (through Q̂)

• • depends on H0 (U0).

We now compute the energy

E =
∑

k

〈k|Ĥ0|k〉 +
1

2

∑

kl

[〈kl|G|kl〉 − 〈kl|G|lk〉]. (7.153)

as a function of kF (density). The kF that minimizes this energy is the ground state, and the
corresponding density should be the density of nuclear matter in its ground state. The results of a
typical calculation with two different N -N potential models is shown in Fig. 7.10.

Figure 7.9: Binding energy of nuclear matter as a function of Fermi momentum, for 2 values of the
wound integral κ.

The effective interaction (G) between nucleons in the nuclear medium is generally very much
weaker than the N -N interaction in free space. This is illustrated in the figure below.

As a result, it is then a very good approximation to consider the nucleons as essentially free
particles within the nuclear volume.

7.7 Problems
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Figure 7.10: Effective tensor interactions for infinite nuclear matter.


