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1. a) A&M 33.4: 3) :
Confirm the normalization [R) = (2S)"2 S(R) |0) and S(R’) S+(R) |R) = 2S|R")

b) Suppose (for S= ¥2) that we write (k| S, (R) S, (R+ay)|k) = (1/4) cos §. Referring to the
relationship for (k| S, (R) S_(R’)|k) derived in class, what is the value of 6, the angle between
spins on neighboring sites in the § direction?

c) A&M 33.4: ¢) Show that (k| S, (R)|k) = 0, which means that the phase of the spin wave is
unspecified in state |Kk).

2. Refer to pp. 661-663 of A&M; the spin susceptibility of a conduction electrongasat T=0K
may be discussed by another method. Let n, = (n/2)(1 ¥ C) be the concentration of spin-up (-
down) electrons, i.e. parallel (antiparallel) to a magnetic field H.

a) Show that, in H, the total energy per volume in the spin-up band in a free-electron gas is
E"=Eo(1-9)™+(n/2) ueH (1-©),

where Eo = (3/10)neg in terms of the Fermi energy &g in zero magnetic field. Find a similar
expression for E".

b) Minimize the total energy per volume E* + E~ with respect to £ and solve for the equilibrium
value of ¢ in the approximation { < 1. Show then that the magnetization M = (3/2) anZH/sF, as

in the class discussion of Pauli paramagnetism.

¢) We now consider the effect of exchange interactions among the conduction electrons. As a
viable first approximation, we assume that electrons with parallel spins interact with each other
with energy -V (with V > 0), while electrons with antiparallel spins do not interact with each
other. Show that the additional term - (1/8) V n? (1 - ¢)? is added to E* and find a similar
expression for E™.

d) Minimize the total energy and solve for  again in the limit £ < 1. Show that the
magnetization is

3nug

M= H

3
28|: —EVn

Notice that there is peculiar behavior for V > 4¢g/3n. One can easily show that at H=0 the total

energy for the paramagnetic state with ¢ = 0 is unstable relative to a ferromagnetic state with
finite . This is called the Stoner criterion for ferromagnetism. (adapted from Kittel, ISSP) This
kind of phase transition at T=0 is now glamorized with the label "quantum phase transition."



3. Consider the Landau theory of phase transitions at a tricritical point, for which
F =go + (1/2) a (T-To) P* + (1/6) ge P°
a) Show that B = ¥, i.e. thatP o (To—T)Y* near the transition.

b) Show that the susceptibility X = P/ E)E=0 o« |To =T i.e. g = 1 as for the critical
transition, but that the critical amplitude ratio is 4 rather than 2.

4. A&M 34-2.

2. The London Equation for a Superconducting Slab '
Consider an infinite superconducting slab bounded by two parallel planes perpendicular to the
y-axis at y = +d Let a uniform magnetic field of strength H; be applied along the z-axis.
{a) Taking as a boundary condition that the parallel component of B be continuous at the
- surface, deduce from the London equation (34.7) and the Maxwell equation (34.6) that within
the superconductor

| cosh (/A
B = BOR B() = Hy g or

(b) Show that the diamagnetic current density flowing in equilibrium is

. ia ¢ sinh (y/A)
=iy jy) = oy Ho ooy N

() The magnetization density at a peint within the slab is M(y) = (B{y) — H,)/4n. Show
that the average magnetization density (averaged over the thickness of the slab) is

OHof, A d\
‘"P-_fr = —'--E; (1 — ? tanh _J'.{)l {34.43}

‘and give the limiting form for the susceptibility when the slab is thick (d » A) and thin (d « A}

(34.42)

5. A&M 34-4. [Note that you do not need to derive eq. (34.46).]
Next page



4. The C ooper Problem
Consider a pair of electrons in a singlet siate, described by the symmetric spatial wave function

" rdk & {r=r"
dir — 1) = J PEE y(kje™ T (34.45)
In the momentum representation the Schradinger equation has the form
ﬁzkz) I" dk’
- = | =—= VK K')rk’).

We assume that the two electrons interact in the presence of a degenerate free electron gas, whose
existence is felt only via the exclusion principle: Electron levels with k < kg are forbidden to each
of the two electrons, which gives the constraint:

7Ky =0, k< kg. (34.47)
We take the interaction of the pair o have the simple auractive form (cf. Eq. (34.16)):
ﬁlk 2
Vik, k)= -V, & < 1:; €8+ he, i=1,2;
= 0, otherwise, (34.48)

and look for a bound-state soluticn to the Schrodinger equation (34.46) consistent with the
constraiat (34.47). Since we are considering unly one-electron levels which in the absence of the
aitraction have energics in excess of 285, a bound state will be one with energy E less than 28¢,
and the binding energy will be

A =28 - E 134.49)

{a) Show that a bound state of energy E exists provided that

fip o N(e)ds
28— E

| =V (34.50)
B
where N(€) is the density of one-electron Jevels of a given spin.

(b) Show that Eq. (34.50) has a solution with E < 28 for arbitrarily weak V, provided that
Nigg) # 0. (Note the crucial role played by the exclusion principle: If the lower cutof were not
&g, but 0, then since N{0) = 0, there would not be a solution for arbitrarily weak counpling).

{(¢) Assuming that N(8) differs negligibly from N(&g) in the 1ange & < & < & + hw, show
that the sinding energy 1s given by

e~ 2/ NEFF '
A = 2hew TW, {34+51}

or, in the weak-ceupling linmnt:
A = 2hwe™ #NEFV (34.52)



