Study Guide for Final, v. 0.9

The final emphasizes topics after the midterm (see below) but earlier material will be included to the extent that it can be compared with these later subjects (e.g. magnons vs. phonons):

Drude model

Sommerfeld model & Sommerfeld expansion

Bloch's theorem, 2 proofs

Crystal momentum, bands, velocity, Fermi surface

Density of states, van Hove singularities

Nearly-free electron model

Gaps, behavior near a Bragg plane, role of structure factor

Extended, reduced, repeated zone schemes

Fermi surface and Brillouin zones

(Not spin-orbit coupling)

Tight-binding model

LCAO, overlap, overlap integral, general features

(Not Wannier functions)

carbon nanotubes

Band structure

Muffin tin, OPW, pseudopotential; (Not APW, KKR)

Semiclassical electron dynamics

Equations of motion, consequences of model, holes

Response to electric field, uniform magnetic field

Closed orbitals, periods of extremal orbits, effective masses

Basics of relaxation time approximation; (Not pp. 252-9)

Landau levels, de Haas-van Alphen; Not "Other Fermi surface probes"

Band structure of typical metals, esp. simple metals, noble metals

Semiconductors

Gap, statistics, law of mass action, donor & acceptor levels

pn & metal-semiconductor junctions, drift & diffusion currents, rectification

Band bending, inversion layers

Beyond independent electrons

Hartree, Hartree-Fock, Slater determinant, Slater exchange, exchange, correlation

Screening, Thomas-Fermi, Lindhard

Density functional theory, Kohn-Sham eqns., exchange-correlation potential, LDA, GGA

Basics of Fermi liquid theory (first part of Schofield article)

Pauli paramagnetism, rigid-band model (within Sommerfeld model), Stoner criterion

Heisenberg model for spins on a lattice, magnetic interactions in free electron gas

Spin waves/magnons, magnetic domains & their walls

Work function and its components

Universal curve of electron mean free path and its importance

Surface relaxations, energies, probes: LEED, STM and related scanning probes

Types of effective masses

Holes

Gaps

Dependencies on T, m, n, lattice structure, Bravais or not (i.e., basis)