Lecture 8 -- Quantum Trajectories 1

We have suggested that the operator master equation for a photoemissive
source is statistically equivalent to a stochastic quantum mapping. Each
iteration of the mapping involves a quantum evolution under a nonunitary
Schrédinger equation, for a random interval of time, followed by a wave-
function collapse at the end of this interval. In general, the probability
distribution governing the duration of the quantum evolution depends on
the past history of the source. In most cases it will be very difficult to imple-
ment this mapping analytically. However, it is quite easy to implement on a
computer. The computer simulations generate “trajectories” for a stochas-
tic wavefunction that describes the current state of the quantum-mechanical
source, conditioned on a particular past history of coherent evolution and
“collapse. Time series obtained from these trajectories have a direct statis-
tical correspondence to the fluctuating signals obtained by monitoring a
single quantum system (not an ensemble) in the laboratory. They can be
analyzed like experimental data ~ for a stationary process, by averaging in
time; the time averages reproduce the usual quantum-mechanical average.
We now apply this quantum trajectory method to various elementary
examples, and show that it reproduces results obtained by conventional
methods. The material presented in this lecture is taken from a presemtation
by Carmichael and Tian at the 1990 Annual Meeting of the Optical Society
of America {8.1]. ' : . S : 1

8.1 Damped atoms and cavities

Perhaps the simplest example we can consider is spontaneous emission from
a two-state atom. In this example the 'pi(_:tur_e.obté.incd from the quantum
trajectory approach is a picture that has been presented in many guises
before. It is the picture of jumps between discrete atomic states inherent
in the Einstein rate equations [Eqs. {3.4a) and (3.4b)]. A closely related
example is the decay of an optical cavity mode prepared in a Fock state.
We will look first at the atomic example and then at the decaying cavity
mode. k _ ; . s T e v

We consider 2 single two-state atom (lower state |1} and upper state
[2}) described by the source master equation (2.26) (with 7 = 0). The field
radiated by the atom is given in terms of source operators by (2.61). To
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make things as simple as possible we will assume that the detector sees the
complete 47 solid angle into which the photon is emitted, The source ﬁdd
operator scaled to gwe photon fux into the detector is theu

E(t) = \/’?J...(t - ?‘/c)., | _ o (81)

where v is the Einstein 4 coefficient and r is the distance from the source to
the detector; the overall phase of this field is unimportant since the decom-
position of the master equation dynamics we consider is based on intensity.
The superoperators (£ — 8§} and § that govern the coherent evolution and
collapse, respectively, are defined by the relationships

Spe = FO—PeT+, (828)
(L —8)pe "f%w.@[anﬁcl — s(ov0-pc + peoi0-), | (8.2b)
where g, is the unnormalized conditioned density operator — the density op-

erator for the atom conditioned on its past. In this example the conditioned
density operator may be written in terms of a pure state wavefunction:

pelt) = [N (e g )

The dynamical evolution of the unnormalized wavefunction |$,(t)} is gov-
erned by the nonunitary Schriodinger equation

d - 1 . | _ N o
Egl‘qi’)c) = ;—h-fﬂcbc) .. : _ T (8.4&) |

With the non-Hermitian Hamiltonian

2

H = lhwo, — ihloyo-. | . (8.4b)
The evolution generated by (8.4a) is interrupted by collapses

) — G, R g © (8.59)
with collapse operator _ _

E=Foo. o (88D

The pmb'}.bﬂlty for a collapse to occur in the 1nterv¢1 (t t + At] is gwu:i by

'pc(t trrSpc(t)]Af,

= (YA pe(D)loso-(e(t))

- {be(B)loro-|e(t))

= (yAt ,
RO

The SpOIlt.:ulf‘OllS emission example is sufﬁuentlv simple that we can ac-

tually. solve the trajectory equations (8.4a) and (8. 50.) dnaly tn,all) Assume
an arbitrary initial cond:hon

: ('8.6)
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hbc(O)) = |1e(0)) = 61(0)|1) te(0)R). - BT (8 7
From (8 4a.) a,nd (8. 4b) we ﬁnd that the unnormallzed amphtudes & (t) and.

cz(t) obey the equations

Fiwaty, (8.82)

&= -('y/2 + -zwA) (8.8b)
The solutlons are .

at)= 01(0)8’“"‘“ B (8.9a)

&(t) = ca(0)e~(V/Pre3iunt, (8.9b)

The normalized amplitudes are then

o al® - - e;;@; 8.10a)
1() \/{cl(O)l7+|c2(0)|2 v ( .

vpyuge -5':‘*.,;4:’ ‘ 8'10-!)
- TR L

Equa.tlcms (8.10) provide the solution for the conditioned wavefunction dur-
ing the coherent evolution that occurs between collapses:
()} = ex(B)[1) + a(1)]2)
e (0 :w,q,tql) o Cz(mc‘( i) -“ll.u,q_t}z

- Viel(0)? + |cz )itzf-r-t" s (811

The probability for a collapse durlng (t,t_.-l-- AT) is given by

‘62(0)|2 ~vt - L
(0)I2+Icz(0)lze—"ﬂ’ T )

pe(t) = ('ré\t)l

for an initially excxted atom (cl(O) = 0) thls probabzhty is mdependent of
time. Clearly there is only one collapse in each trajectory since (8.52) and

(8. 5b), and (8.9a) and (8.9b) give (after norma.hzmg the sta,tes before a.nd
after the collapse)

[We(8)) = c1(B)[1) + ca(t)i2) — |1). _ - (8.13)

Once the atom reaches the lower state (1) the nonunitary Schrodinger equa-
tion [solutions (8.10)) simply keeps it there forever; obviously, there can be
one and only one photon emission from a single undriven ator. -

From the solution (8.11) we can get some sense of what the conditioned
wavefunction means. Equation (8.11) gives the state of the afom conditioned
on the fact that it has not yet emitted a photon it is, the state of the atom
before it collapses. We find then that if ¢;(0) # 0 this state apploaches i1}
for times much longer that the lifetime v~T. What. this tells us is that if
we have waited many lifetimes without seeirig a photon emission, 1t 1g-very
likely that the atom actually 'I)ega.n in the lower state |1}, from which it
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could not emit . Thus, in waiting for a photon that never came we gain the
information that the atom must be in the lower state; therefore, the atom
reaches the lower state either by a collapse and photon emission [Eq. (8.13)],
or by eventually convincing us that it was actua.]ly in t.he lower state all the
time. : :

An atom prepared in the upper state must collapse into the lower state.
A sample trajectory for the conchtmncd wavefunction is defined by a fune-
tion cz(t), that starts with ¢;{0) = 1, and remains constant until some
random time at which it switches to thc value ¢;(t) = 0, remaining there
forever; similarly, the function ¢;{t) starts with ¢;(0) = 0 and switches up
to the value ¢;(t) = 1, remaining there forever. This is the jump that we
all expect as the atom emits its quantum of energy. The time of emission
for each quantum trajectory is random; in the computer it is determined by
comparing a random number with the collapse probability (8.12) at each
step of the stochastic simulation, as described in Sect. (7.5). If a large num-
ber of these emissions is simulated and the number of emissions occurring in
(1,1 -+ At} is plotted against t, we recover the exponential decay illustrated '
in Fig. 8.1. This corresponds to the exponenhal deca.3 obtained from the
émission probability ( ;A?)pg;@), where pag(t) = e~ 7 is the solution to the
Einstein rate equations.

6000

Fig, 8,1. Number of emissions in the in-
terval v to y(t + Af} versus i for
‘a simulation of 100,000 spontaneocus
emission trajectories (yAt = 0.05).

The extension of these ideas to the decay of a cavity mode prepared in

a Fock state is probably fairly obvious. In this case the operator master
equation for the source is (1 47) and the relationship between the radiated
field and source operators is given in (1.60). If the detector intercepts the

entire cavity output be’xm, the source field se¢ a.led to give photon flux mto
the detector is .

Eut) = Vara( t— r./c. . I e (8.14)
In place of (8. 24) and (8. 2b) we' hiwe '

Spc = 2map¢a i . " (8.153)
(£ — 8)p. = —iwclatape] — w(atape + peala). . (8.15b)
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Once again, the conditioned density operator factorizes as a pure state and
satisfles the nonunitary Schrédinger equation (8.4a). The non-Hermitian
Hamiltonian is '

_' H= ﬁw(;vatclz —Aiﬁf_mfd:. - o , (8.16)
The vgollapsve (8.5a) is ’g'ovemed by the collapse operator -
¢ =v3%a v ' - (817)

and éhe collapse prodability is given by

Cpe(t) = (2rat)te(S pe(t)]

= rApDlatalpe)
= ran{bDlaldd @) -
- e OB R

It is again possible to solve the evolution between collapses analytically.
- We will not bother with the details. The main point is that the amplitude
equations are uncoupled as they are in (8.82) and (8.8b); consequently, if
‘the cavity mode is in a Fock state, it remains in that Fock state until the
. next collapse (photon emission) occurs. At that time the effect of the col-
lapse operator (8.17) is to take the Fock state |n} to the Fock state |n ~1).
Clearly, an initial state | V) will undergo N jumps, at N random times, until
the cavity mode reaches the vacuum state, where it will remain forever, A

- sample trajectory is illustrated in Fig. 8.2(a). On average the dwell time

‘in each Fock state becomes longer as the level of excitation decreases; this
_ is because the collapse probability (8.18) depends on the conditioned mean

- photon flux V2« (y.(t)]atalpc(t)) which decreases as the system descends
the random staircase. Figure 8.2(b) shows the evolution of the average in-
tracavity photon number, calculated by averaging 10,000 realizations of the
- conditioned mean photon number {a'a), = {.(t)latalp.(t)). The ensemble
‘average over trajectories shows the'exponential decay gix‘ren_by (8.3).

(3.18)

- 8.2 Resonance fluorescence
- Both of the examples we have just seen are really rather trivial. The quan-
~ tum trajectories for both are elementary examples of Markoff processes on
djsc‘i'etjef state bsp&'_c_es._' Anyone who is familiar w:th Mai_koﬁ' .processes and
" a little quantum mechanics could have concocted simulations to produce
~ the quantum trajectories shown in Figs, 8.1 and 8.2. But we have some-
~ thing more than a concoction. We have a well-defined formal procedure for
~constructing the stochastic process-from an operator master equation. In
 general the quantum dynamics for a given source will not be as transparent .
~ as'in the foregoing examples, and the “concoction” approach will not work.




.8.2 Resonance fluorescence

Elg 8.2. (a). Sample quantum frajectory shov.(ring the conditioned mean photoe number
fot a damped cavity mode prepared in the Fock state [10}. (b} Average of the conditioned
mean photon number for 10,000 trajectories.

The first such nontr1v1al example we look at is resonauce ﬂuorescence The
discussion that follows is an extension of work by Carmichael et al. [8.2].

To model resonance fluorescence the master ‘equation for the atomic
source changes from (2. 26) to (2.62); we add the dipole interaction with the
coherent driving field, proportional to the Rabi frequency £2. If we keep the
assumption that the detector -sees all the fluorescence, the source field in
photon number units is still (8 1). The colla.pse of the atomic state is still
described by the superopera.tor rela.t.lon (8. 2&), and (8 2b) changes to '

(£— S)PG_.__ —ig ""A[azs pel — 3(9/2)[3_‘“’“"4 + ew‘tf"— PC] ;
¢ a9 __ —(o-+6 pc + pca+0 ) - . - E .- | (8 19)

The rest of the formulatlon outhned in (8. 1) (8 6) is the sa.me, w:th the
Hamiltonian (8.4b) changed to

H—lﬁw,qaz-{—h(ﬂ/?)[e“‘“‘“a +e“""‘a_] ;‘_ﬁla+o,.. . (820)

Now from our prewous d1scussmn of v resonance ﬂuorescenoe we know that '
a single fluorescing atom evolves toa statlonary state, In comrentmnal lan- _
guage the density operator for the stationary state is defined by (3.64a) and

(3.64b). In the quantum trajectory approach we would' expect the evolution
of the conditioned wa.vefunctlon to be governed by a stationary stochastic

process. The stochastic process is, in fact, still fairly simple because the
collapse relation (8 13) still applies. Thus, after each collapse (photon emis-
sion) the atom is in its lower state; this means that the evolution between
collapses is always: solved from the same initial condltaon. Unlike the spon-
taneous emission example, in the presence of the driving field the atom does
not remain in the lower state after.a collapse, rather, it evolves to a new
state |1p(1)) = er(£)|1) + co(8)|2) withco(t) # 0, where t is now the time
since the previous colla.pse In: th.ls way the atom contmuously generates
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a nonzero probability for making a further collapse and ermttmg another
photon _ A . v
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Fig. 8.3. (a) Sample quantum tra_]ectones showing the conditioned upper state probability

of an atom undergoing resonance fluorescence, (a) Weak excitation, 2 /4 = 0.7; kb) strong
exc:tatlon, Q/'v = 3.5. LS

The equatlons obe}cd by t,he unnor mahzed aauphtudos durmg, the co-
herent evolution are minor variations of (8 ca) and- (8 8b}:

& = 1w,z + zfQP)e“"‘* __ _' _ (8.21a)
&y = —(v/2 + Yiwa) + a(ﬂ/g "’*’*‘Afa._ ' s i 21b)

For an initial state |1$.(0)) = |1} t,h(, salutmns to these equa,tlons give the
unnormalized amplitudes '

c,(t) =e W‘*)* 5“""‘{cosh(5t)+ (/2 )31nh(6t)] (8.225)
Ca(t) = te ~(x/4)t “%'WA‘-._ s1nh(6t), o __ (822b)
where A _ S -

-vorr-@. 629

The colla.pse probabxhty in the hme mterval (t ¢ + At] is then gwen by |

@F + @

pc(t)—(’rAt)Icz(t)lz—(7At)l_ g i‘ S (824)

F1gu.re 8 3 shows two exampies of quantum trajectones for resonance
ﬂuorescence ‘The full quantum. state could be represented by a stochas-
tic :motion .on.the Bloch sphere; in Fig, 8.3 the upper state probability
lea(£)[? is plotted. The vertical. jumps return the atom to the lower state
at the times of the. photon emissions; ‘these are the collapses responsxble for
photon . antubunchmg in resopance ﬁuoresoence (Sect 3. 5) ‘Notice that for
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strong excitation [Fig. 8.3(b)]icekierant Rabi oscillations oceur between the

emissions.

A

i

t

9

. lytieally in [8.2}.

; Fig.8.4. Waiting-time distribution for
resonance fluorescence obtained from
a histogram of the time intervals be-
tween collapses (photon emissions) in
‘the simulation of Fig. 8.3(2). The.inset
. shows the distribution calculated ana-
. Iytically in [8,2]." -

Fig, 8.5. 'Waiting-time distribution for
.resonance fluorescence obtained from

_ & histogram of the time intervals be-

tween collapses (photon emissions) in
thé simulation of Fig. 8.3(b). The inset
shows the distribution calculated ana-

From simulations like those illustrated in Fig. 8.3 it is possible to carry
out photoelectric counting experiments in the computer. We simply count
the number of collapses that oceur in a counting time T'. By repeating the
process for many counting intervals we build up a histogram of the number
of counting intervals that produce n photoelectron counts. The normalized
histogram is the photoelectron counting distribution. We can also obtain
waiting-time distributions in an equivalent manner. Figures 8.4 and 8.5
show two ex}amples of waiting-time distributions obtained from quantum
trajectories for resonance fluorescence, For comparison the inset shows the
waiting-time distribution calculated analytically in [8.2]. The agreement is
very good. Of course, the numerical simulations show residual sampling
Huctuations, much like those expected in a laboratory experiment.
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8.3 C_aﬁity nﬂlmc"le' driven by thermél_. light

For an example like resonance Auorescence, where everything needed to sim-
ulate the quantum trajectories is contained in (8.22)-(8.24), the numerical
simulations are very efficient. However, in general, the numerical work can
be increased by a number of factors. First, often it is not possible to solve for
the conditioned state |15.(1}) explicitly; then a numerical differential equa-
 tion solver must do this for us. Second, photon efission sequences in res-
onance fliorescence are Markoffian. The emission sequences are completely
specified by the distribution of waiting times between adjacent emissions.
This is because the atom returns to the same state, the lower state 11}, on
every collapse. After it does this it has forgotten all about where it has been
in the past. More generally, each time the source collapses it collapses to a
different state. The collapsed state depends on the state before the collapse,
which in turn depends on the history of coherent evolution and collapse the
source has experienced in the past. In this situation a general solution to the
- nonunitary Schrodinger equation, for arbitrary initial conditions, is needed.
These complications are likely to be encountered when considering an
optical cavity mode as the source. The infinite Fock state basis makes it
unlikely that a general solution to the nonunitary Schrédinger equation
can be found, and even less likely that a solution exists in a compact form
snitable for fast numerics. We now consider a cavity mode driven by thermal
light. This is an example where the additional numerical work is required.
However, if the intensity of the driving field is not too large, so that the
Fock state basis can be truncated at a relatively low level, the numerical
requirements are still quite modest. ' B
Thermal excitation adds another complication. Since it is incoherent we
are not able to factorize the conditioned density operator as a pure state.
Equation (8.15a) holds for describing the collapse. But (8.15b) is replaced
l}y ) g : : 3 :

L= 8)pe = ~iwclatapd] - w(a'ape + poata)
o + 2:»:?'%».(1{:,56_(1* +_a*pca‘ —'-'afce;pg - ,o_cafa);_ ~(8.25)

the term proportional to A does not allow us to use a pure state for describing
the evolution between collapses. Nevertheless, the general formalism still
holds; it just has to be implemented in density matrix form, with the collapse
probability for the interval (£, + At] given by

pelt) = tr[Spc(?f)JA_f = (26At)tr[pc(t)ata). - -. " (826)

Figure 8.6 shows results for 7 = 1. The thermal light is turned on at t = (
and the figure shows the transient behavior as the cavity mode approaches
a stationary state. Figure 8.6(2) shows a sample quantum trajectory for
the conditioned mean photon number tr[pc(t)a’a); Fig. 8.6(b) is the average
of 10,000 such trajectories and reproduces the exponential filling of the
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cavity desdribed by tghé _convqnt_ié_ﬁal meanva.lue equation (33) Examples
~ of trajectories for higher intensity light are shown in Fig, (8:7).

- ;
4'—6 0.6}

!
3.0 45

. 14
Fig.8.6. (a) Sample quantim trajectory showing the conditioned mean photon number
for a cavity driven by ‘thermal light. The. thermal light turns on‘at ¢ = 0 and injects
a photon flux 2«7 = 2x (A = 1). The Fock state basis is truncated at 20 photons. (b)
Ensemble average of 10,000 such trajectories. o '
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Fig. 8.7. Sample quantim trajectories showing the conditioned mean photon number for
a cavity driven by thermal light. (a) The thermal light turns on at t = 0 and injects a
photon flux 2x7 = 10k (7 = 5}, The Fock state basis is truncated at 50 photons. (b) The
thermal light turns on at ¢ =0 and injects a photon flux 2xf = 20x (A ='10). The Fock
state basis is truncated at 80 photons. ' wt v a

- These trajectories show a surprising feature that tells us a little more
about the nature of the conditioned quantum state, The sudden jumps in the
 conditioned mean photon numbeér occur-when the state collapses as a photon
is emitted from the cavity. But the jumps are upwards, not downwards as in
Fig. 8.2. How can the emission of a photon make the number of photons in
the cavity increase? The explanation is that the conditioned mean photon
number is the mean of a'a with respect to a state that is conditioned on
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evmythmg that has taken place along the tra}ectorv in the past. Every
twist of this trajectory adds information to the memory. The conditioned
mean photon number propagates information; it is not an actual photon
number out there in the cavity. For a thermal state the observation of one
colla.pse, one photon emifted, means another is very likely, at twice the
average rate, immediately following the first. Thus, the photon bunch.lng of
thermal light (Seet. 3.4) is built into the conditioned siate as s upwards jumps
in the conditioned mean phot.on number, which gives upwauls jumps in the
collapse probability [Eq. (8.26)] immediately following each coHapw

8.4 The degenerate Qaraxhetr_ic oscillator

ERS

Lecture 6 was devoted to the homodyne detection of squeezed light, In the
next lecture we will see how the quantum tra..](,ctory approach can be used to
treat homodyne detection. But first, let us look at squeezed light by direct
photoelectrlc detection. The source master equation is based on the master
equation (2.63) for the degenerate pd1amet1u, oscillator. However, we will
not take this master equation directly as it is written. We are interested in
below threshold operation, where the quantum-classical correspondence led
us to the Fokker-Planck equations (4.72) and (4.73). In these equations the
coupling between fluctuations in the pump mode and the subharmonic mode
has disappeared; the pump field simply enters the Fokker-Planck equation
for the subharmonie'mode through-the parameter A\. We can build this sim-
plification into the master equation directly. Essentially, we assume that the
density. opm‘ator p factorizes into a prodiict of density operators for the two
cavity modes. We then write a master equation for each. The density oper-
ator for the pmp mode satisfies the master equation for a cavity driven by
‘the coherent field £; ~ the second, fourth, and sixth terras on the right-hand
side of (2.63);. the master equation for the subharnionic mode is obtained
from the first, third, and fifth terms on the right-hand side of (2. 63), with
the (,oherent state amplitude of the pump substituted for the opemtor b

( é:_—?wc[ﬂ - ﬂ] + (ﬁ/\/2)[(LT2 —lzwr t_ 0.2["2“0: l] . .
- h(?ﬂpa - aTap ~ pa fa). : (8.27)
Here ) is the pump pammeter defined below (4. 64)

Now the superoperator governing the coll&pse is defined by \8 Laa) and
the coherent evolution between collapses i is governed by

(JC S)p\c = hzwc[a a,pe) + (h.)t/Z} sz —ilwot _ g2gitwet 5]
L H r:,(a ap, -F—p(a'a) o T T S (8.28)

It is again possible to factorize p, as a pure state and use the nonunitary
Schrédinger equation (8.4a). The non‘Hermitian Hamiltonian is
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H= hwea a+zﬁ(n/\/2)(af2 “’2“0‘.. k3 *2“’0‘) zﬁna 7 {8.29)

The coilapse proba.bﬂxty for the mterva,l (t £ At] i is calcula.ted from (8.18).

A sample quantum tra;ectory for the’ ‘conditioned mean photon number
in the subharmonic mode i is shown in Fig. 8. S(a) Figure 8. 8(b) is the average
of 10,000 such traJectones and shows the build-up of the piean photon
number in the ca,v1ty after. the pump is turned onatt=0. ‘Note how, once
again, the collapse can cause’ an up'wa,rds Jjump in_ the conditioned mean
photon number. In this example some of the jumps are upwards and some
are dowhward. The reason for this is that photons are created in pairs inside
the cavity, When the first” photon of a pair is emitted from the cavity the
conditioned mean photon number, and hence the collapse proba.b111ty (8.18),
makes an upwards jump; this ensuses-that thie second photon will be emitted
within & short time [~ (2x)~!] after the first. After the second photon has
been emitted the collapse decreases the condltxoned mean photon. number,
whlch in a few cavxty hfetlmes retums to 1ts steady state va.lue
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l‘g 8.8. (a) Sa.mple qua.nt.um t.ra_lect.ory shomng t.he condltmned megn, photon number for
a degenerate parametric oscillator operated 50% below threshold’ (A = 0.5). The pump
light is turned on & ¢ = 0. The Fock state basm is t.runca.ted at 10 phot.ons (b) Ensémble-
average of 10,000 such trajectories, -

‘The pairing of photon emissions leads- to an imbalance between even
and odd numbers of photoelectron. counts in the photoelectron counting
distribution, We have already mentioned this in Sect. 6.5. Figure 8.9 shows
a photoelectron counting distribution obtained by counting the collapses
(photon emissions) for many quantum trajectories of the sort illustrated in
Fig..8.8(a). The even-odd oscillations are large. The inset shows the distri-
bution obtained by Wolinsky and :Carmichael [8.3] for the same parameters,
using a related but quite dxfferent method. This photoelectron counting dis-

tribution also agrees with the results of Vyas and Singh 8. 4] whlch are
obtamed analytlcaliy
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Fig. 8.9. Photoelectron counting distri-
bution for the output of a degener-
“ate paremetric oscillator obtained by
counting collapses {photon emissions)
in the simulation of Fig. 8.8(2). The in-
set. shows the photoelectron counting
_distribution obtained be other meth-
ods [8.3, 8.4].

8.5 Complementary .unravell'.ing's

In all of the e tmmples we. have looked at during this lecture the decomposi-
tion of the source master eqtmtlon dynamics has been based on the direct
photoelectric detection of the radiated light. From the stochastic quantum
tra._]er'l,orles obtained in this way we can calculate quantities such as aver-
age intensities, waiting-time distributions, and photoelectron counting dis-
{ributions — quantities that are measured by direct photoelectric detection.
From the concrete visualization that the quantum tra ajectory approach al-
lows, we also gain some understanding of the physical processes gomg on in
the source. The decompaosition we have used is not, however, unique; it is
tailored for direct photoelectric detection. We cannot use the quantum tra-
Jectories obtained from this decomposition to caleulate everything we might
be interested in (at least not in a simple way), nor do these trajectories help
us understand every nook and cranny of the quantum dynamics.

In Sect. 7.4 we referred to the decomposition of the source master equa-
tion to give quantum I,LaJecfr)lles as an unravelling of the master equation
for the source. The quantum dynamics contained in the master equation are
unravelled to give us a picture of what is going on in a visible form. The
pictures we have presented so far reveal what is going on when we focus
our attention on emitted photons (direct photoelectric detectlon) Other
unravellings of the master equation will give us different pictures, suited to
help us understand different aspects of the physics. The cmnp!ete picture
is the complement of all the separate pictures, and by the very nature of
quantum mechanics no single picture can substitute for them all: In a way,
our difficulty in understanding the full quantum mechanical evolution lies
in the fact that the one master equation carries the many pictures forward
in parallel. We gain a lot by séparating the pictures out.

- In the next lecture we will see how to use the quantum trajectory ap-
proach to analyze the homodyne detection of squeezed light. By modeling
homodyne detection we arrive at a quite different unravelling of the master
equation {8.27). In fact, we obtain an infinity of unrav ellings, one for each
choice of the local oscillator phase. As an introduction, Fig. 8.10 shows a
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sample trajectory for. the conchtmned mean photon number for two different
choices of the local oscillator pha.se These correspond to a measurement of
the unsqueezed qua,dratu.re X and the squeezed quadrature Y of the fluc-
tuating field amplitude. These trajectories look nothmg like the trajectory
shown in Fig. 8.8(a); they are even qualitatively different from each other,
one showing much larger fluctuations than the other. However, all three
of these trajectories are equwalent in the mean. They are eomplementa.ry
unravelhngs of the quantum average tr[p(t)a"a] (note that it is not the
conditioned density operator here), the time avera,ge of all three produees'
exaetly the same uumber. _ :

(a)

30 N o 30 . 60
Kt Kt

¥ig. 8.10. Sample qua.nt.um trajectories showmg the conditioned mean photon number

obtained from the unravelling of the degenerate pararietric oscillator master equation

described in Sec. 9.2. The parametric oscillator is operated 10% below threshold (X = 0.9).

(a) The unravelling is based on a measurement of the X- qua.drat.ure variance; {b) the
unravelling is based ona measurement of the Y quadrature varignce..
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