Physics 721: Homework # 6
Due Wednesday November 25
website: http://www.physics.umd.edu/courses/Phys721

Numerical solutions of the Schrédinger equation

We want to numerically find the bound-state energies and wavefunctions of the one-
dimensional or radial Schrédinger equation
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on the interval r € [a,b] with boundary conditions ¥ (a) = 3(b) = 0. We break this
Hamiltonian into a kinetic energy operator
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and potential V(r). The particle-in-a-box solutions ¢, () form a complete set of real or-
thonormal functions ¢, (r) with K¢, (r) = €,¢,(r) with n = 1,2,---. We assume €, < €5,
when n < m.

The homework exercise will work through the numerical method called the discrete vari-
able representation (DVR).

1. Expand the wavefunction () in terms of particle-in-a-box solutions and give expres-
sions for the matrix elements of the kinetic energy and potential operator in this basis.
(At this stage you do not need to evaluate V explicitly.)

We are now going to use a quadrature method to evaluate spatial integrals assuming N
spatial points r; and weights w; so that

/dr 2(r) ~ sz E(ri) .

2. Write a discrete form of the orthogonality

/dT(bm(r)d)n(T) = 0nm
and completeness relation

D on(r)on(r) = 6(r —1').

Realize that the delta function §(r —r’) is a distribution with [ dr f(r)é(r—7r") = f(r’)
for all well-behaved f(r). (Again you do not yet need the explicit form of the particle-
in-a-box solutions)

3. Write a discrete form of the potential matrix elements Vi, .

We restrict ourselves to the first IV particle-in-a-box solutions and we define the N x N
matrices Us; = 6;;V (r;) and Opn; = Vw,;¢n(13).

4. Show that OTO = 1.

5. Show that OOT is equivalent to the completeness relation derived in (2) and thus
OTO = 1. What type of matrix is O?

6. Show that U = OTVO.



7. What are the basis functions in the spatial grid basis? Ie. determine the functions

gi(x) in terms of ¢, (x) such that ¢(x) = 25:1 Cnn(x) = Zf;l b;gi(z). Show that

gi(x;) = 6;;7 What is the relation between ¢, and b;?.

The functions g;(x) are localized in space. See figure for an example (you do not need to
reproduce this)
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Note that we have transformed the potential from a “finite basis representation” to a “dis-
crete variable representation” or grid basis. We can now return to the particle-in-a-box
solutions and use its explicit form.

8. Show that with r, =a+i(b—a)/(N+1)and w; =(b—a)/(N+1)fori=1,...,N
the matrix O satisfies OTO = OOT = 1. Tt helps to separately evaluate the diagonal
and off-diagonal matrix elements.

9. Find a closed expression for the kinetic energy operator in the grid basis. L.e. evaluate
and simplify OT KO using the geometric series. It helps to separately evaluate the
diagonal and off-diagonal matrix elements.

We now want to find the eigenenergies for an actual physical system. We choose the har-
monic oscillator potential V (r) = uw?r?/2 on the region [—L, L]. Note that if L — oo the
eigenenergies are F,, = (n — 1/2)hw for n =1,2,3,....

10. Using your favorite numerical tool, program the Hamiltonian
OTKO+U

and study the lowest ten eigenenergies as a function of N and L. In particular, plot
the difference of the numerical values and the exact values F,, as a function N. Which
eigenenergy converges quickest and why is this so? How does the energy depend on
L. How large should L be?

You might want to keep the following in mind: a) Choose the most natural units for
the problem: you can make the Schrodinger equation dimensionless, b) Is this a good
way to debug your code? For example, using SI units does not lead to easily debugged
code.



