
Physics 721: Homework # 2

Due Wednesday October 7

1. Dressed states and adiabatic passage

Consider a two-level system subject to an E/M field of fixed intensity (Rabi fre-
quency) but varying detuning δ(t) (Figure 1). Assume that initially the detuning
is large (|δ(0)| ≫ |Ω|) and negative (ν < ω). The detuning is then slowly scanned
through resonance.
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Figure 1: Problem 1

• Determine the instantaneous (adiabatic) eigenenergies and eigenstates as a func-
tion of δ(t).

• If the initial state of the system is |ψ〉 = |1〉, what is the final state, including
relevant phases? Consider now the situation when the detuning is adiabati-
cally returned to its initial value. What is the final state vector of the system,
including relevant phases? Provide physical interpretation for various accumu-
lated phases.

• For a given Ω, how slow should the detuning change such that the resulting
evolution is adiabatic?



2. Raman transitions and adiabatic elimination

Consider a 3-level system interaction with two separate E/M fields, as shown in
Figure 2. Assume the fields only interact with atoms via the couplings shown (e.g.
field 1 does not couple |2〉 to |3〉).
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Figure 2: Problem 2

• Derive equations of motion for slowly varying probability amplitudes in the
rotating frame (c1(t), c2(t), c3(t)).

• Assuming that the detunings δ1 = ν1−ω13 and δ2 = ν2−ω23 are large but similar
(e.g. δ1 ≃ δ2 and δ1, δ2 ≫ Ω1,Ω2), show that the dynamics of the system can
be described by an effective Hamiltonian,

Ĥeff = ~ω̃1|1〉〈1| + ~ω̃2|2〉〈2| + ~Ωeff |1〉〈2| + ~Ω∗

eff |2〉〈1|

and derive ω̃1,2 and Ωeff .

[ Hint: for large detunings you can ”adiabatically eliminate” the excited state
amplitudes, i.e. set ċ3(t) = 0 and express c3 in terms of c1,2. The remain-
ing evolution equations can then be described in terms of the above effective
Hamiltonian. ]



3. Coherent control of spontaneous emission

Consider the transition from a bound state (|b〉 with energy ǫ0 = 0) into a 1-D
continuum induced by a quasi-monochromatic field with a time-dependent, slowly
varying amplitude f(t). The generic Hamiltonian for this system is given by

Ĥ =

∞∑

k=0

(~ωk − ~ν)|k〉〈k| − ~f(t)
∑

k

gk|b〉〈k| + h.c.

The continuum states |k〉 represent 1-d momentum states. Assume that ν ≫ ωk=0,
for all relevant k, gk = g is constant, and that the density of momentum states near ν
is ρ0. ( The simplified dispersion relation ωk = v0|k| can be used, if needed). Assume
that the bound state corresponds to a localized state at r = 0, and that only positive
values of r are allowed. The latter condition implies that without coupling to the
bound state any incoming wave-packet would simply reflect from the r = 0 surface.

This model represents a 1-dimensional ”toy model” for laser-induced photoioniza-
tion or photodissociation. This model also describes the coupling of a single mode
cavity to free space modes with one semi-transparent mirror (the time dependent
coupling represents modulation of the mirror reflectivity). r = 0 corresponds to the
positions of the ”ion”, center of mass of ”molecule” or the mirror surface, respectively.

• Assuming that the system is in the bound state |b〉 at t = 0 derive an expression
for probability amplitude cb(t) as a function of f(t).

• Derive an expression for the real-space wavefunction c(r, t) =
∫
∞

−∞
dk ck(t)e

ikr

of the outgoing (continuum-state) wavepacket at r = 0.

• Consider now an inverse problem (such as photoassociation). Suppose that the
incoming wavepacket cin(0, t) is given. Assume that it is far from the center
(r = 0) at some initial time ti, when the bound state is empty. Derive an
expression for the bound state amplitude cb(t) and in terms of cin(0, t) and f(t).

[ Hint: Equations for ck should now be solved with initial conditions ck(ti). ]

• Extra Point For the given shape of the incoming wavepacket, is it possible to find
a function f(t) such that at t→ ∞ cb → 1, i.e. the system is in the bound state
with unity probability? If so, derive the condition (such as differential equation)
for f(t) as a function of incoming wavepacket. Provide physical interpretation
for your results.

[ Hint: The best way to approach this problem is determine the conditions for
which the amplitude of the outgoing wavepacket and its derivative are zero at
all time. Alternatively, it may be possible to use some of the previous results
together with the fact the dynamics should be time reversible. ]

N.B. This is the basic idea behind what is called ”coherent control”. In principle,
it be applied, for example, to the problem of efficient and coherent photo-
association of BECs or to the problem of coherent conversion between photonic
and atomic qubits. These could be potential topics for the term project.


