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Due Wednesday September 23

website: http://www.physics.umd.edu/courses/Phys721

1. Rabi oscillations

Consider a two-level atom with states |g〉, |e〉 separated by an energy ~ω:

H = ~ω|e〉〈e| − 2~Ω cos(νt+ φ)|e〉〈g|+ H.c. (1)

• TransformH to a rotating frame by application of an appropriate (time-dependent)
unitary transformation. Rewrite this new Hamiltonian using Pauli matrices de-
fined by σz = |e〉〈e| − |g〉〈g|, σx = |e〉〈g|+ H.c., σy = Iσxσz.

• Make the rotating wave approximation, neglecting terms in the new rotating
frame oscillating at the frequency ±|ω+ν|. Making the identification δ = ω−ν,
evaluate the probability that an initial state |g〉 makes the transition to the state
|e〉 after a time t as a function of δ. For simplicity, you can use units of frequency
such that Ω = 1. What happens for δ = 0? Find the maximum probability for
a given δ.

• What is the quantum state of the system, starting in an initial state |g〉, for
δ = 0, as a function of φ and t? What is the expectation value of σx and σy as
a function of φ and t?

• In class we noted that the formal solution for the propagator is given by the
series

U(t) = 1 −
i

~

∫ t

0

H(t′)dt′ −
1

~2

∫ t

0

∫ t′

0

H(t′)H(t′′)dt′′dt′ + . . . (2)

For periodic, time-dependent Hamiltonians with period τ , show that U(t+nτ) =
U(t)U(τ)n. This may be easiest by using the time-ordering operator and writing
U(τ) = T exp(− i

~

∫ τ

0
H(t)dt).

• Finding U(τ) can tell us about the dynamics at long times for this situation.
Towards this end, we can take advantage of the following property of unitary
operators: all unitary operators can be written as exp(−iA), where A is a
hermitian operator.1

Make the identification U(τ) = exp(− iτ
~
(H0+H1+. . .)) where Hi are Hermitian

operators, to be determined. Expanding U(τ) for small τ , identifying H0 =
1

τ

∫ τ

0
H(t)dt as the average Hamiltonian over one period, and comparing to

Eqn. (2), find the first correction H1.

• Going now back to the original time-dependent Hamiltonian, for δ = 0 but not

making the rotating wave approximation, find H0 and H1. What is the size of
the first“correction” term?

1The proof: all unitary operators are diagonalizable and have eigenvalues of the form exp(−iφj)
with the phases φj real. Let V be the matrix which diagonalizes U (i.e., V UV † is diagonal). We

define Ãij = φjδij where δij is the Kroenecker delta (zero if i 6= j, 1 if i = j). Then A = V †ÃV is
the Hermitian operator with the property U = exp(−iA).



2. Hyperfine interaction in an external magnetic field

Consider the hyperfine interaction Hamiltonian as derived in class, with the ad-
dition of an external magnetic field

H = A~I · ~J +B(gJµ0Jz − gIµ0Iz) (3)

where ~J and ~I are the combined orbital and spin angular momentum and the nuclear
spin, respectively with ~ = 1. [Jµ, Jν ] = iǫµντJτ , and similarly for ~I.

• Recall that the total angular momentum is the vector ~F = ~J + ~I. Show that
F 2 = (F · F ) and Fz are constants of the motion (i.e., commute with the
Hamiltonian).

• Consider the scenario when J = 1/2 (as occurs, for example, in the ground
state alkali atoms with term 2S1/2). In this scenario, the Hamiltonian becomes
solvable analytically. You can start by consider the effect of the Hamiltonian on
the states |mI , 1/2〉 and |mI +1,−1/2〉, where the ±1/2 label the Jz eigenvalues
of the state and mI is the Iz eigenvalue. Write down the Hamiltonian in the
subspace with total mF = mI + 1/2. This should be a 2x2 matrix.

• Find the eigenvalues and eigenvectors of this Hamiltonian.

• For the specific case of I = 1, sketch or plot the energies as a function of
external magnetic field B using appropriate scale-free parameters. You may set
gJ = 1, gI = 0.1 for simplicity. This should include the solutions for all allowed
F 2 and mF values. Consider the range B = 0 to B ≫ A/|(gJµ0 + gIµ0)|. Label
the F 2 and mF values for each line at low and high field.

• Often systems become sensitive to experimental errors. One measure of this sen-
sitivity is the dependence of the relative energies between two states to small
variations of external parameters. To illustrate this, evaluate the energy differ-
ence between pairs of states differing in mF by 1. For a given pair, is there a
value of B such that d/dB(Estate1 − Estate2) = 0? You need only find one such
pair.



3. Optical transitions and angular momentum

An atom of total angular momentum F has a spontaneous radiation rate A. It
radiates to a lower level with angular momentum F ′ = F − 1. The problem is to find
the rates for the various allowed transitions, i.e. the fraction of the radiation that
goes into each of the possible transitions (F,m) → (F ′, m′). Each of the rates is pro-
portional to |〈F,mF |Y1,q|F

′, m′

F 〉|
2 with q = ±1, 0. The rates can be found by either

direction evaluation of matrix elements or by applying the following considerations:

(1) The sum of the rates out of each state F,m must equal A

(2) The sum of the rates into each state F ′, m′ must equal A 2F+1

2F ′+1
.

(3) An unpolarized mixture of radiators in level F must emit equal intensities of
light with each of the three polarization components (z, σ±).

(4) The rate for a transition (F,m → F ′, m′) must be the same as for (F,−m →
F ′,−m′).

Consider the situation F = 2, F ′ = 1. Designation the transitions by letters as
follows:

a : m = 2 → m′ = 1
b : m = 1 → m′ = 1
c : m = 0 → m′ = 1
d : m = 1 → m′ = 0
e : m = 0 → m′ = 0

• The Wigner-Eckart theorem (see e.g. Sakurai) can be used to evaluate matrix
elements in terms of an m-independent quantity. Note however that F involves
orbital, electron spin and nuclear spin components. Does the W.-E. theorem as
stated (i.e. in Sakurai) still apply? Explain why.

• Find the rates for a through e in terms of A using the appropriate version of
the Wigner-Eckart theorem and make a figure of your results. (Clebsch-Gordan
coefficients can either by worked out from first principles, taken from a table in
a quantum mechanics or spectroscopy text or computed with Mathematica)

• Using the symmetry considerations and conservation of probabilities (i.e. the
total number of decaying atoms from level F should be equal to the total number
arriving to F ′) show rules (2) and (4) must be true.

• Find the rates for a through e using rules (1)–(4), and make a figure of your
results.
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Figure 1: Problem 4

4. Two-level approximation

Consider a three-level system, shown in Figure 1, with two excited states, each
coupled to the ground state with identical selection rules and matrix elements. The
energy spacing between states |2〉 and |3〉 is ∆ω, which is much smaller than the
optical frequency ν and the frequency separation between 1 and 2, ω12. An oscillating
(optical) field is tuned to resonance for the transition |1〉 → |2〉. It will, in principle,
also induce transitions from |1〉 to |3〉.

• Derive equations of motion for the probability amplitudes ci associated with
each level, i.e., by writing the state of the system as |ψ〉 = c1|1〉+ c2|2〉+ c3|3〉.
Assume that the applied field has frequency ν and equal Rabi frequencies for
both of the optical transitions (Ω).

• Suppose now that ν = ω12 and ∆ω is much larger than the Rabi frequency Ω.
Evaluate the effect of state |3〉 on Rabi oscillations to the second order in 1/∆ω.

• Show that the leading order correction to the Rabi dynamics due to the state |3〉
can be compensated by slightly detuning the laser field. Determine the detuning
δ = ν − ω12 needed. Provide physical explanation for your result. Describe the
physics behind the next relevant correction.

• Under which conditions (i.e. Rabi frequency and interaction time) can the
effect of state |3〉 be neglected? In the case involving D1 transition line in 87Rb
the hyperfine splitting of the excited state is about 0.8 GHz. Can we treat a
transition between hyperfine sublevels as a two-level system for laser-cooled or
room temperature atoms? The natural linewidth of the excited state of 87Rb
is about 5 MHz and the Doppler broadening at room temperature is about 500
MHz.


