Physics 721: Homework # 1
Due Wednesday September 23
website: http://www.physics.umd.edu/courses/Phys721

1. Rabi oscillations
Consider a two-level atom with states |g), |e) separated by an energy fuw:

H = hwle)e| — 2hQ cos(vt + ¢)|e){g| + H.c. (1)

Transform H to a rotating frame by application of an appropriate (time-dependent)
unitary transformation. Rewrite this new Hamiltonian using Pauli matrices de-
fined by o, = |e)e| — |gXg|, 0. = |e)(g9| + H.c.,0, = [0,0..

Make the rotating wave approximation, neglecting terms in the new rotating
frame oscillating at the frequency +|w+vr|. Making the identification 6 = w—v,
evaluate the probability that an initial state |g) makes the transition to the state
le) after a time ¢ as a function of §. For simplicity, you can use units of frequency
such that Q = 1. What happens for 6 = 07 Find the maximum probability for
a given 4.

What is the quantum state of the system, starting in an initial state |g), for
0 =0, as a function of ¢ and t? What is the expectation value of o, and o, as
a function of ¢ and t7

In class we noted that the formal solution for the propagator is given by the
series

Ut)=1- % /0 H()dr —% /0 t /0 tlH(t’)H(t”)dt”dt’ T 2)

For periodic, time-dependent Hamiltonians with period 7, show that U(t+nt) =
U(t)U(7)". This may be easiest by using the time-ordering operator and writing
U(r) = T exp(—1% [y H(t)dt).

e Finding U(7) can tell us about the dynamics at long times for this situation.
Towards this end, we can take advantage of the following property of unitary
operators: all unitary operators can be written as exp(—iA), where A is a
hermitian operator.!

Make the identification U(7) = exp(—*(Hy+H; +...)) where H; are Hermitian
operators, to be determined. Expanding U(7) for small 7, identifying Hy =
% fOT H(t)dt as the average Hamiltonian over one period, and comparing to

Eqn. (2), find the first correction Hj.

e Going now back to the original time-dependent Hamiltonian, for 6 = 0 but not
making the rotating wave approximation, find Hy and H;. What is the size of
the first “correction” term?

!The proof: all unitary operators are diagonalizable and have eigenvalues of the form exp(—ig;)
with the phases ¢; real. Let V be the matrix which diagonalizes U (i.e., VUV is diagonal). We
define A;; = ¢;0;; where §;; is the Kroenecker delta (zero if i # j, 1 if i = j). Then A = VIAV is
the Hermitian operator with the property U = exp(—iA).



2. Hyperfine interaction in an external magnetic field

Consider the hyperfine interaction Hamiltonian as derived in class, with the ad-
dition of an external magnetic field

H=AI-J+ Blgsuod. — griol.) (3)

where J and I are the combined orbital and spin angular momentum and the nuclear
spin, respectively with A = 1. [J,, J,] = i€,,,J;, and similarly for I.

e Recall that the total angular momentum is the vector F = J+ 1. Show that
F? = (F - F) and F, are constants of the motion (i.e., commute with the
Hamiltonian).

e Consider the scenario when J = 1/2 (as occurs, for example, in the ground
state alkali atoms with term 2.5; /2). In this scenario, the Hamiltonian becomes
solvable analytically. You can start by consider the effect of the Hamiltonian on
the states |my, 1/2) and |m;+1, —1/2), where the +1/2 label the J, eigenvalues
of the state and m;y is the I, eigenvalue. Write down the Hamiltonian in the
subspace with total mgp = my + 1/2. This should be a 2x2 matrix.

e Find the eigenvalues and eigenvectors of this Hamiltonian.

e For the specific case of I = 1, sketch or plot the energies as a function of
external magnetic field B using appropriate scale-free parameters. You may set
g7 = 1,97 = 0.1 for simplicity. This should include the solutions for all allowed
F? and my values. Consider the range B = 0 to B > A/|(gspo + grito)|. Label
the F'? and mp values for each line at low and high field.

e Often systems become sensitive to experimental errors. One measure of this sen-
sitivity is the dependence of the relative energies between two states to small
variations of external parameters. To illustrate this, evaluate the energy differ-
ence between pairs of states differing in mpr by 1. For a given pair, is there a
value of B such that d/dB(Fstate1 — Estate2) = 07 You need only find one such
pair.



3. Optical transitions and angular momentum

An atom of total angular momentum F' has a spontaneous radiation rate A. It
radiates to a lower level with angular momentum F’ = F'— 1. The problem is to find
the rates for the various allowed transitions, i.e. the fraction of the radiation that
goes into each of the possible transitions (F,m) — (F’,m’). Each of the rates is pro-
portional to [(F,mp|Y; ,|F’,m})|? with ¢ = +1,0. The rates can be found by either
direction evaluation of matrix elements or by applying the following considerations:

(1) The sum of the rates out of each state F, m must equal A

2F+1
2F'41°

(3) An unpolarized mixture of radiators in level F' must emit equal intensities of
light with each of the three polarization components (z,04).

(2) The sum of the rates into each state F’,m’ must equal A

(4) The rate for a transition (F,m — F’ m’) must be the same as for (F, —m —
F'.—m/).

Consider the situation F' = 2, F” = 1. Designation the transitions by letters as
follows:

a: m=2 — m =1
b: m=1 — m'=1
c: m=0 — m=1
d: m=1 — m' =0
e: m=0 — m' =0

e The Wigner-Eckart theorem (see e.g. Sakurai) can be used to evaluate matrix
elements in terms of an m-independent quantity. Note however that F' involves
orbital, electron spin and nuclear spin components. Does the W.-E. theorem as
stated (i.e. in Sakurai) still apply? Explain why.

e Find the rates for a through e in terms of A using the appropriate version of
the Wigner-Eckart theorem and make a figure of your results. (Clebsch-Gordan
coefficients can either by worked out from first principles, taken from a table in
a quantum mechanics or spectroscopy text or computed with Mathematica)

e Using the symmetry considerations and conservation of probabilities (i.e. the
total number of decaying atoms from level F' should be equal to the total number
arriving to F”) show rules (2) and (4) must be true.

e Find the rates for a through e using rules (1)—(4), and make a figure of your
results.



Figure 1: Problem 4

4. Two-level approximation

Consider a three-level system, shown in Figure 1, with two excited states, each
coupled to the ground state with identical selection rules and matrix elements. The
energy spacing between states |2) and |3) is Aw, which is much smaller than the
optical frequency v and the frequency separation between 1 and 2, wq5. An oscillating
(optical) field is tuned to resonance for the transition |1) — |2). It will, in principle,
also induce transitions from |1) to |3).

e Derive equations of motion for the probability amplitudes ¢; associated with
each level, i.e., by writing the state of the system as [¢)) = ¢1|1) + ¢2|2) + ¢3]3).
Assume that the applied field has frequency v and equal Rabi frequencies for
both of the optical transitions (£2).

e Suppose now that v = wyy and Aw is much larger than the Rabi frequency (2.
Evaluate the effect of state |3) on Rabi oscillations to the second order in 1/Aw.

e Show that the leading order correction to the Rabi dynamics due to the state |3)
can be compensated by slightly detuning the laser field. Determine the detuning
0 = v — wy9 needed. Provide physical explanation for your result. Describe the
physics behind the next relevant correction.

e Under which conditions (i.e. Rabi frequency and interaction time) can the
effect of state |3) be neglected? In the case involving D; transition line in 8"Rb
the hyperfine splitting of the excited state is about 0.8 GHz. Can we treat a
transition between hyperfine sublevels as a two-level system for laser-cooled or
room temperature atoms? The natural linewidth of the excited state of 8Rb
is about 5 MHz and the Doppler broadening at room temperature is about 500
MHz.



