Atomic Structure:

Consider the atomic Hamiltonian for an atom in free space, with no applied fields, \(\vec{E}_{\text{ext}} = 0, \vec{B}_{\text{ext}} = 0 \)

\[
H_A = \sum_i \left(\frac{\hat{p}_i^2}{2m} - \frac{Ze^2}{4\pi\varepsilon_0 r_i} + \frac{e^2}{4\pi\varepsilon_0} \sum_{i<j} \frac{1}{r_{ij}} \right)
\]

where \(|\hat{r}_i| = r_i \) \(|\hat{r}_i - \hat{r}_j| = r_{ij} \) \(\vec{R}_{\text{Nucleus}} = 0 \) \(M_{\text{Nucleus}} = \infty \)

(as an aside, to the extent that the electric dipole approximation is good, \(\hat{p} = m\hat{v} \), canonical momentum = kinetic energy)

Note \(H_A \) leaves out relativistic effects which lead to the existence of spin, and spin interactions, and it leaves out nuclear spin interactions. (Well discuss later.)

In general, an \(N \)-electron system has eigenstate wave functions of \(N \) position variables

\[
\psi_i = \psi_i(\hat{r}_1, \hat{r}_2, \ldots \hat{r}_N)
\]

\(\rightarrow \) this multivariable wave function can be complicated to solve.
The easiest way to deal with the problem is in terms of single particle solutions

\[\Psi_i = \psi_{i_1}(\mathbf{r}_1) \psi_{i_2}(\mathbf{r}_2) \cdots \psi_{i_N}(\mathbf{r}_N), \]

where the best single-particle functions \(\psi_i(\mathbf{r}_i) \) are chosen. This is usually only an approximation to the full solution

\[\Psi_i = \psi_i(\mathbf{r}_1, \mathbf{r}_2, \ldots, \mathbf{r}_N) = \sum_j C_{ij} \psi_{j_1}(\mathbf{r}_1) \psi_{j_2}(\mathbf{r}_2) \cdots \psi_{j_N}(\mathbf{r}_N) \]

Most general solution

The single particle approximation assumes \(C_{11} = 1 \) and \(C_{ij} = 0 \) for all other \(j \neq 1 \).

This can be a very good solution to the problem if \(\psi_{i_1}(\mathbf{r}) \) and \(\psi_{i_2}(\mathbf{r}) \) etc. are chosen correctly.

In addition, we will have to deal with antisymmetry of the wave function to satisfy Fermion anti-symmetry according to Pauli.

This course assumes you are familiar with the Hydrogen Atom.
Start with our first example: Helium

Assume - non-relativistic
- ignore spin.

\[|\vec{r}_1 - \vec{r}_2| = r_{12} \]
\[|\vec{r}_1| = r_1 \]

\[\hat{H} = \frac{\hat{p}_1^2}{2m} + \frac{\hat{p}_2^2}{2m} - \frac{Ze^2}{4\pi\varepsilon_0 r_1} - \frac{Ze^2}{4\pi\varepsilon_0 r_2} + \frac{e^2}{4\pi\varepsilon_0 r_{12}} \]

Solve for
\[\hat{H} \psi(\vec{r}_1, \vec{r}_2) = E \psi(\vec{r}_1, \vec{r}_2) \rightarrow 2\text{-particle Schrödinger eqn.} \]

Try looking for single-particle solutions by ignoring the electrostatic repulsion between electrons:

\[H_1 = \frac{\vec{p}_1^2}{2m} - \frac{Ze^2}{4\pi\varepsilon_0 r_1} \]
\[H_2 = \frac{\vec{p}_2^2}{2m} - \frac{Ze^2}{4\pi\varepsilon_0 r_2} \]

\[H_x = \frac{e^2}{4\pi\varepsilon_0 r_{12}} \]
\[H = H_1 + H_2 + H_x \]

Assume \(H_x \) is small:

to zeroth order then, we have Hydrogen-like solutions for each electron

\[(H_1 + H_2) \psi = E^{(0)} \psi_0 \]
\[\psi_0 = U_{\text{lin}}(\vec{r}_1) U_{\text{lin}}(\vec{r}_2) \]

\[E^{(0)} = E_n + E_l + E_m \]

\(n, l, m \) are the quantum numbers of Hydrogen wave functions.
Simplify the notation by calling $n' l m' \rightarrow a$,
$n' l m' \rightarrow b$ (notation: (1) is F_1
(2) is F_2)

$$\Psi_0 = U_a(1) U_b(2) \quad E^{(0)} = E_a + E_b$$

\rightarrow but there is another state, with the same energy

$$\Psi'_0 = U_a(2) U_b(1) \quad E^{(0)} = E_b + E_a$$

Since these are degenerate, we have to use degenerate perturbation theory, which amounts to diagonalizing the perturbing Hamiltonian $(H_\text{\textscript{int}} = \frac{e^2}{4\pi\varepsilon_0 R_{12}})$ in the space of

$$\Psi_0 = U_a(1) U_b(2), \quad \Psi'_0 = U_a(2) U_b(1).$$

The electron interaction will lift this degeneracy

Using the basis Ψ_0, Ψ'_0 which in matrix form is

$$\begin{pmatrix} \Psi_0 \\ \Psi'_0 \end{pmatrix}.$$ Calculate the matrix elements of $H_\text{\textscript{int}}$:

$$H_{11} = \langle U_a(1) U_b(2) | H_\text{\textscript{int}} | U_a(1) U_b(2) \rangle \quad \left\{ e^2 \int \frac{|U_a(1)|^2 |U_b(2)|^2 d^3 r_1 d^3 r_2}{4\pi\varepsilon_0 R_{12}} \right\}$$

$$H_{22} = \langle U_b(1) U_a(2) | H_\text{\textscript{int}} | U_b(1) U_a(2) \rangle \quad \left\{ e^2 \int \frac{|U_b(1)|^2 |U_a(2)|^2 d^3 r_1 d^3 r_2}{4\pi\varepsilon_0 R_{12}} \right\}$$

$$H_{12} = \langle U_a(1) U_b(2) | H_\text{\textscript{int}} | U_b(1) U_a(2) \rangle \quad \left\{ e^2 \int \frac{|U_a(1)|^* |U_b(2)|^* U_b(1) U_a(2) d^3 r_1 d^3 r_2}{4\pi\varepsilon_0 R_{12}} \right\}$$

$$H_{21} = \langle U_b(1) U_a(2) | H_\text{\textscript{int}} | U_a(1) U_b(2) \rangle \quad \left\{ e^2 \int \frac{|U_b(1)|^* |U_a(2)|^* U_a(1) U_b(2) d^3 r_1 d^3 r_2}{4\pi\varepsilon_0 R_{12}} \right\}$$

Where state 1 = $\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \Psi_0$, state 2 = $\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \Psi'_0$.

Vector form \(\rightarrow \)
Define the "direct" integral to be

J = H_{11} = H_{22}.

Define the "exchange" integral

K = H_{12} = H_{21}.

To find the new eigenvalues and eigenvectors to
First order, we have to diagonalize the Hamiltonian:

\[
(H_0 + H_T) \psi_0' = \begin{bmatrix} E^{(0)} & 0 \\ 0 & E^{(0)} \end{bmatrix} + \begin{bmatrix} J & K \\ K & J \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = E \begin{bmatrix} C_1 \\ C_2 \end{bmatrix}
\]

\[
H_0 \uparrow
\]

\[
E^{(0)} = E_a + E_b.
\]

\[
\text{diagonalizes with}
\]

\[
\psi_s' = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}
\]

\[
U_S = \frac{1}{\sqrt{2}} \left[U_{a(1)} U_{b(2)} + U_{b(1)} U_{a(2)} \right]
\]

\[
E_s' = E^{(0)} + J + K
\]

\[
\psi_a' = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}
\]

\[
U_A = \frac{1}{\sqrt{2}} \left[U_{a(1)} U_{b(2)} - U_{b(1)} U_{a(2)} \right]
\]

\[
E_a' = E^{(0)} + J - K
\]
Note: Since we diagonalized with respect to H_z

$$\left< U_s \left| \frac{e^2}{4\pi\epsilon_0 r_{1z}} \right| U_A \right> = 0$$

clearly U_A is antisymmetric when r_1 and r_2 are exchanged, and U_s is symmetric.

\Rightarrow the Hamiltonian commutes with permutation of particles, and we get symmetric or anti-symmetric eigensolutions, without reference (yet) to the Pauli symmetrization postulate.

Apply this to the ground state of Helium: both electrons in the ground 1s state: \(1s^2\)

\[U_A = 0 \quad U_s = U_{1s}(r_1) U_{1s}(r_2) \]

\[E^{(0)} = E_{1s}^{2s2} + E_{1s}^{2s2} = -2 \cdot 2^2 \cdot 13.6 \text{ eV} = -8 \cdot 13.6 \text{ eV} = -108.6 \text{ eV} \]

\[E^{(1)} = E^{(0)} + J = -108.8 \text{ eV} + 34 \text{ eV} \]

\[J = \epsilon \int \left| U_{1s}(r_1) \right|^2 \left| U_{1s}(r_2) \right|^2 \, d^3r_1 \, d^3r_2 = \frac{1}{4\pi\epsilon_0} \frac{5}{8} \frac{e^2}{2a_0} \approx 34 \text{ eV} \]

\(a_0 = \text{Bohr radius}\)
\[\text{He}^{++} \quad (Z^2 = 13.6 \text{eV}, \ Z=2) \]

\[\text{He}^+ \quad (\text{Hydrogen with } Z=2) \]

20.4\text{eV} \Rightarrow \text{binding energy of the first electron to be removed.} \\
34\text{eV} \quad 1^{\text{st}} \text{ order correction} \\
1s^2 \quad 0^{\text{th}} \text{ order}

we get the binding energy for removal of 1 electron to be \(20.4\text{eV} \Rightarrow \text{the actual value is } 24.58\text{eV.} \)

\text{not bad! (there was no exchange } k \text{ to calculate)}

Now look at excited states.

assume \(U_a = 1s \text{ state of Hydrogen} \)

\(U_b = n\ell \text{ state.} \quad (\text{for Helium, doubly excited electrons } n,\ell \text{ are above the ionization limit}) \)

\[E^{(1)} = E^{(0)} + J \pm K \]

\(\rightarrow \) here we show that it helps to choose \(U_a + U_b \) carefully:
Since the first electron in the 1s state screens other electrons in higher states (particularly if the higher state has a large angular momentum) let's be smart about how we choose $U_A(r) + U_B(r)$ to account for the screening. Split the Hamiltonian as follows:

$$H_0 = \frac{p_1^2}{2m} + \frac{p_2^2}{2m} - \frac{e^2}{4\pi \varepsilon_0} \left(\frac{2}{r_1} + \frac{1}{r_2} \right)$$

$$H_I = \frac{e^2}{4\pi \varepsilon_0} \left(\frac{1}{r_{12}} - \frac{1}{r_2} \right)$$

Note that $H_0 + H_I$ is exactly the same, but H_I mimics screening. Also $H_I \to 0$ as $r \to \infty$.

$$E_n \quad \text{J shifts} \quad \text{2k splits} \quad \text{us} \quad \text{ UA}$$

U_A is always lower energy than U_B.

In practice, splitting $H_0 + H_I$ like above, significantly improves $E^{(r)}$, so that $E^{(r)}$ doesn't have to be as big.
- Effect of J always raises energy (weakens binding) accounts for screening

- Effect of K always lowers U_A vs. U_S. accounts for quantum correlation

What about spin?

the electron is a spin $\frac{1}{2}$ particle, with two states $+\frac{1}{2}, -\frac{1}{2}$.

label those states $\chi_+ \& \chi_-$

Then to a good approximation

$$\Psi(r) = U_{\text{new}}(r) \chi_{\pm}(r)$$

$$\Psi_0 = U_A(1) \chi_{\pm}(1) U_b(2) \chi_{\pm}(2) \Rightarrow \text{four spin combinations.}$$

Pauli principle says we must always have an anti-symmetric electron wave function. Form symmetric & anti-symmetric spin combinations:

$$U_S \chi_A \quad U_A \chi_S \Rightarrow \text{both are anti-symmetric}$$

$$\chi_S = \begin{cases} \frac{1}{\sqrt{2}} (\chi_+(1) \chi_-(2) + \chi_-(1) \chi_+(2)) & \chi_A = \frac{\chi_+(1) \chi_-(2) - \chi_-(1) \chi_+(2)}{\sqrt{2}} \\ \chi_-(1) \chi_+(2) & \end{cases}$$
these are just the \(S = 1 \) \(\pm m_s = 1,0,-1 \) and \(S = 0 \) total angular momentum states you get when adding two spin \(-\frac{1}{2}\) momenta.

the \(S = 1 \), \(X_s \) state are called triplet states.

the \(S = 0 \), \(X_A \) state is called a singlet state.

So solutions are of the form:

\[
U_s \, X_A \quad \text{or} \quad U_A \, X_s
\]