
October 23,2003 
 
 

Physics 721 Mid-term exam 
 
 

The rules: 
 
 You are free to consult any non-human resource in order to complete this exam. 
 
 
Due at noon on October 28, 2003 in room 2127 3301 Physics. 
 
NO EXCEPTIONS. 
 
 
Question 1: 
The ground state of  23Na is 3s 2S1/2, its nuclear spin is I=3/2, and its ground-state hyperfine 
splitting 1.77 GHz. 
 
a)  Make an energy level diagram of the ground state.  Explain the origin of the quantum number, 
typically called F, with z-projection MF, used to label each level, and give the values of F and MF 
for each level in your diagram.  (Assume that a weak static magnetic field provides the 
quantization axis.) 
 
b)  For a sample in thermal equilibrium at room temperature, calculate what fraction of the 
population of the 3s 2S1/2 ground state has the largest value of F. 
 
c)  The D2 line connects the 3s 2S1/2 ground state with the 3p 2P3/2 excited state.  Make an energy 
level diagram of the 3p 2P3/2   state; label each level with its quantum numbers 
F and MF. 
 
d) For electric dipole transitions involving the D2 line, state the appropriate selection rules for 
changes in quantum numbers F and MF. Assume the direction of propagation of the laser is 
parallel to the weak magnetic field. State explicitly the polarization of the light. 
 
e) The separation of the energy levels in the 3p 2P3/2 manifold from the Hyperfine Interaction are 
F=3 to F=2: 59.6 MHz, F=2 to F=1: 35.5 MHz, F=1 to F=0: 16.5 MHz. Find the magnetic dipole 
hyperfine constant A and electric quadrupole hyperfine constant B for this state in 23Na.   
 
f) In the presence of a magnetic field the 3p 2P3/2 excited state manifold splits again according to 
its MF quantum number. Find the magnetic field necessary to encounter the first “crossing” of the 
lowest state in the F=3 manifold with the upper state of the F=2 manifold.  
 
g) When measuring the lifetime of the 3p 2P3/2 excited state the following decay was observed. 
From the attached plot estimate the lifetime and the frequency or frequencies of quantum beats.  
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Question 2: 
The Coherent state is a minimum uncertainty state with equal variances in its two quadratures. It 
can be generated from the vacuum by the Displacement Operator D(α) in such a way that: 
|α>=D(α)|0>,  where D(α)=exp(α a+- α *a) 
 

a) Find the expectation value of the number of photons in a coherent state | α>. 
b) Calculate the variance in the photon number for a coherent state | α> 
c) Calculate the probability distribution as a function of photon number P(n) for a coherent 

state | α> 
d) Plot the probability distribution of a coherent state with mean photon number 40. 

 
Squeezed states, a generalization of Coherent States, of the electromagnetic field are a class of 
minimum uncertainty states whose uncertainty can be less than the standard quantum limit in one 
of the quadratures while the other will be larger as to maintain the limit on their product given by 
the uncertainty principle. 
 
The states are produced by the Squeezing operator S(ξ) 
 
S(ξ)=exp[1/2(ξ*a2-ξa+2)],   where ξ =rei θ  
 
Then the squeezed vacuum is: 
|ξ>=S(ξ)|0> 
 
The operator has the following properties: 
S+(ξ)=S-1(ξ)=S(-ξ) 
 
The action of the operator on the creation an anhiliation operator is to “rotate” the basis as: 
 
S+(ξ) a S(ξ)  =  a coshr  –  a+ ei2θ sinh r  =  b(ξ) 
S+(ξ) a+ S(ξ) = a coshr –  a+ e-i2 θ sinh r = b+(ξ) 
 

e) Calculate the expectation value of the number of photons (a+a) in a squeezed vacuum. 
f) Calculate the variance in the photon number for the squeezed vacuum. 

It is possible to add amplitude (α) to a Squeezed state using the displacement operator such that 
it has an arbitrary average photon number. Then the displaced squeezed state  
 
D(α)S(ξ)|0>=|α,ξ> 
 
g) Find the photon number distribution for a displaced coherent state | α,ξ >,  
and plot the value for the case of α = 40 and ξ =10. 
 
 
 
 



Question 3: 

Consider a two-level atom with states |g> and |e> and energy difference  hω0, coupled by a laser 
with an atom-laser coupling strength given by the Rabi frequency Ω.  The time-dependent 
electric field is: 
 

)cos( 2
00 ttEE αω += . 

 
a) Find the time-dependent eigenvalues and eigenstates. 
 
b) Plot the eigenvalues vs. t from –τ < t < τ, assuming α = ∆ω /τ, ∆ω = 5Ω. 

 
 
c) If the laser is turned on suddenly at t = -τ, and the atom was initially in state |g>, how 

much population is in the upper dressed state? 
 
d) Assuming the atom starts in the lower dressed state at t = - τ , evaluate the adiabaticity 

parameter )/(|)( 2112 EEt −= ϕϕη &h  at t=0.  (Hint: A series expansion around t=0 
will make the algebra easier). 

 
 
e) If τ = 0.1 Ω-1, is the population predominantly in |g> or |e> at t = τ ? 



Question 4: 

Consider a J=1 -> J=1 transition in an atom, illuminated by a laser beam with   
r 
k = kˆ z  and 

polarization σ+, and a laser beam with  
r 
k = −kˆ z  and polarization σ-.  This is a system that will 

exhibit coherent population trapping as discussed in class.  Now we will include the external 
degrees of freedom in the problem.   
 

a) Show why we can consider this a three-level Λ system only including the m=1, and m=–1 
ground states and the m=0 excited state.   

 
b) We can write the atom-laser interaction as: 
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Considering the external degrees of freedom, and using the fact that eikˆ z  is a translation in 
momentum space, find the non-coupled state Ψnc ( p) in terms of basis states i, p  where 
i=1,-1,or e, and p is the momentum, and show that VAL Ψnc (p) = 0. 
 

c) Find the coupled state in this basis, and evaluate VAL Ψc (p) . 

d) The total Hamiltonian for the atom includes a term, Ha =
ˆ P 2

2m
, where ˆ P  is the momentum 

operator along z. Evaluate Ha Ψnc (p)  and Ha Ψc (p)  and express the results in the 
Ψc (p) , Ψnc (p)  basis. 

 
e) Evaluate Ψc (p) Ha Ψnc (p) .  Discuss the evolution of a non-coupled state with p=0, and 

with p ≠ 0.  This result is the basis for velocity selective coherent population trapping 
(VSCPT). 
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