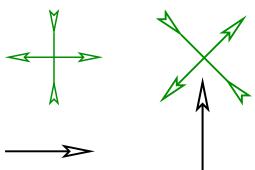
Gravitational Waves: an Overview

Alessandra Buonanno
Department of Physics, University of Maryland

Properties of gravitational waves

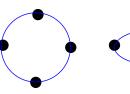
• Stretch and squeeze are

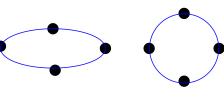

 $\Delta L = h(t) L$

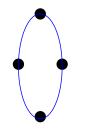
- transverse to direction of propagation
- equal and opposite along orthogonal axis (trace-free)

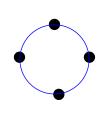
- Gravitons are spin-2 particles
- ullet Two polarizations: h_+ and $h_ imes$
- GW theory: polarizations rotated by $45^{\rm o}$

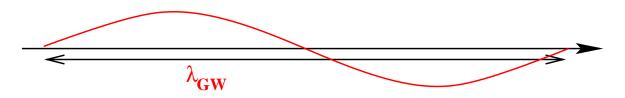
ullet h_+ and $h_ imes$ are double time integral of Riemann tensor

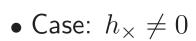

$$\ddot{h}_{ij} \sim R_{i0j0} \sim \partial^2_{ij} \Phi \quad \Phi \Rightarrow$$
 non-static tidal potential

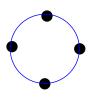

Interaction between GW and ring of free-falling particles

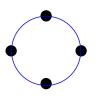

GW propagating along z-axis


• Case: $h_+ \neq 0$

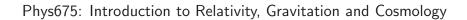

$$h_{\times} = 0$$



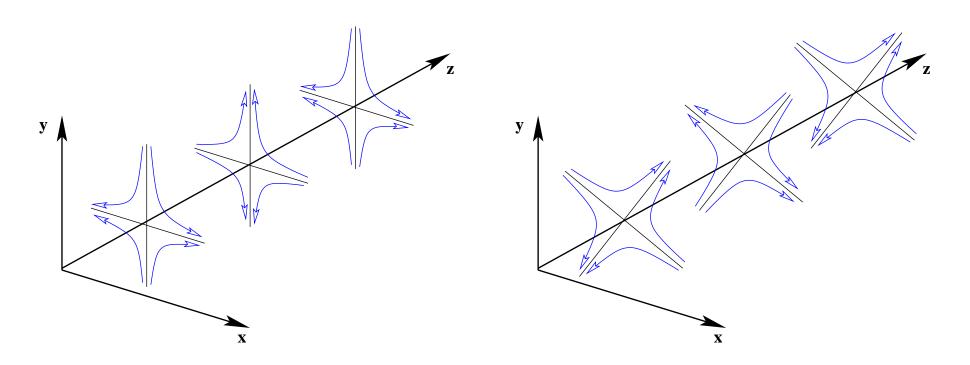


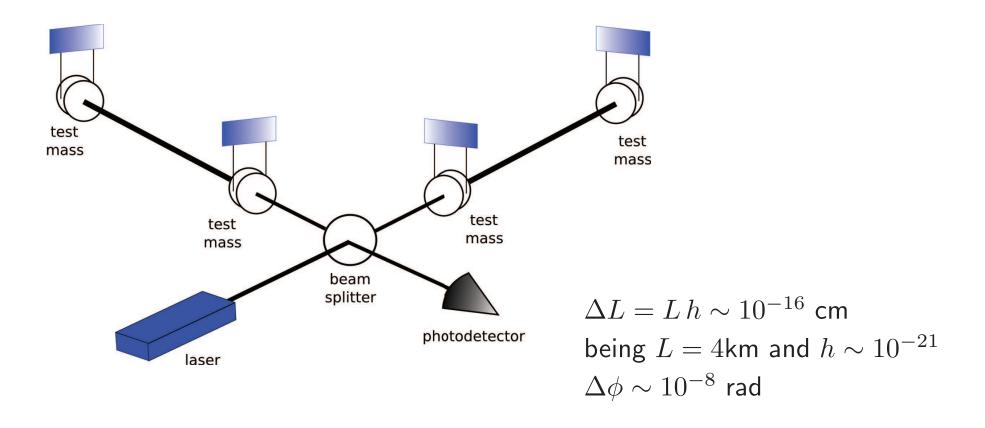


$$h_+ = 0$$



 λ_{GW}




Force pattern for h_{\times} and h_{+}

Force pattern of GWs are invariant under $180^{\rm o}$ degree, by contrast force patterns of EM waves are invariant under $360^{\rm o}$ degree

How to measure gravitational waves

Use light beams to measure the stretching and squeezing induced by GWs

Multipolar decomposition of waves in <u>linear</u> gravity

• Multipole expansion in terms of mass moments (I_L) and mass-current moments (J_L) of the source

$$h \sim \frac{G \, I_0}{c^2 \, r} + \frac{G \, \dot{I}_1}{c^3 \, r} + \frac{G \, \ddot{I}_2}{c^4 \, r} + \cdots$$
 $\cdots + \frac{G \, \dot{J}_1}{c^4 \, r} + \frac{G \, \ddot{J}_2}{c^5 \, r} + \cdots$
 $\cdots + \frac{G \, \dot{J}_1}{c^4 \, r} + \frac{G \, \ddot{J}_2}{c^5 \, r} + \cdots$
 $\cdots + \frac{G \, \dot{J}_1}{c^4 \, r} + \frac{G \, \ddot{J}_2}{c^5 \, r} + \cdots$

 \bullet Typical strength: $h \sim \frac{G}{c^4} \frac{M \, L^2}{P^2} \frac{1}{r} \sim \frac{G(E_{\rm kin}/c^2)}{c^2 \, r}$

If
$$E_{\rm kin}/c^2 \sim 1 M_{\odot}$$
, depending on $r \implies h \sim 10^{-23}$ – 10^{-17}

Quadrupole nature of GW emission in <u>linear</u> gravity

EM theory: Luminosity $\propto \ddot{\mathbf{d}}^2$ $\mathbf{d} = e\,\mathbf{x} \Rightarrow$ electric dipole moment

GW theory: electric dipole moment ⇒ mass dipole moment

$$\mathbf{d} = \sum_{i} m_{i} \, \mathbf{x}_{i} \Rightarrow \dot{\mathbf{d}} = \sum_{i} m_{i} \, \dot{\mathbf{x}}_{i} = \mathbf{P}$$

Conservation of momentum \Rightarrow no mass dipole radiation exists in GR

• GW theory: magnetic dipole moment \Rightarrow current dipole moment

$$\mu = \sum_{i} m_i \, \mathbf{x}_i \times \dot{\mathbf{x}}_i = \mathbf{J}$$

Conservation of angular momentum \Rightarrow no current dipole radiation exists in GR

Comparison between GW and EM luminosity

$$\mathcal{L}_{\rm GW} = \frac{G}{5c^5} (\ddot{I}_2)^2 \qquad I_2 \sim \epsilon M r^2$$

r o typical source's dimension, M o source's mass, ϵo deviation from sphericity

$$\ddot{I}_2 \sim \omega^3 \, \epsilon \, M \, r^2 \, \, {
m with} \, \, \omega \sim 1/P \quad \Rightarrow \quad {\cal L}_{\rm GW} \sim {G \over c^5} \, \epsilon^2 \, \omega^6 \, M^2 \, r^4$$

$$\mathcal{L}_{\mathrm{GW}} \sim rac{c^5}{G} \epsilon^2 \; \left(rac{G\,M\,\omega}{c^3}
ight)^6 \; \left(rac{r\,c^2}{G\,M}
ight)^4 \Rightarrow \;\;\; rac{c^5}{G} = 3.6 imes 10^{59} \; ext{erg/sec (huge!)}$$

- For a steel rod of M=490 tons, r=20 m and $\omega\sim28$ rad/sec: $GM\omega/c^3\sim10^{-32}, rc^2/GM\sim10^{25}\to\mathcal{L}_{\rm GW}\sim10^{-27}~{\rm erg/sec}\sim10^{-60}\mathcal{L}_{\rm sun}^{\rm EM}!$
- ullet As Weber noticed in 1972, if we introduce $R_S=2GM/c^2$ and $\omega=(v/c)\,(c/r)$

$$\mathcal{L}_{\text{GW}} = \frac{c^5}{G} \epsilon^2 \left(\frac{v}{c}\right)^6 \left(\frac{r_S}{r}\right) \qquad \Longrightarrow \qquad \mathcal{L}_{\text{GW}} \sim \epsilon^2 \frac{c^5}{G} \sim 10^{26} \,\mathcal{L}_{\text{sun}}^{\text{EM}}!$$

GWs on the Earth: comparison with other kind of radiation

Supernova at 20 kpc:

- From GWs: $\sim 400 \frac{\rm erg}{\rm cm^2\,sec} \, \left(\frac{f_{\rm GW}}{\rm 1kHz}\right)^2 \, \left(\frac{h}{10^{-21}}\right)^2$ during few msecs
- From neutrino: $\sim 10^5 \frac{\rm erg}{\rm cm^2\,sec}$ during 10 secs
- From optical radiation: $\sim 10^{-4} \frac{\rm erg}{\rm cm^2 \, sec}$ during one week

Electromagnetic astronomy versus gravitational-wave astronomy

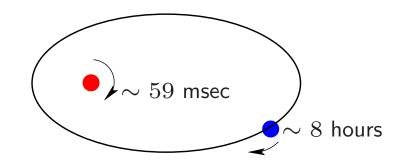
EM astronomy

- accelerating charges; time changing dipole
- incoherent superposition of emissions
 from electrons, atoms and molecules
- direct information about thermodynamic state
- wavelength small compared to source
- absorbed, scattered, dispersed by matter
- frequency range: 10 MHz and up

GW astronomy

- accelerating masses; time changing quadr.
- coherent superposition of radiation
 from bulk dynamics of dense source
- direct information of system'sdynamics
- wavelength large compared to source
- very small interaction with matter
- frequency range: 10 kHz and down

GW frequency spectrum extends over many decades h **LISA Pulsar timing** LIGO/Virgo/GEO/TAMA **CMB** 10^{-16} 10^{-2} 10^{-8} 10 Hz


Phys675: Introduction to Relativity, Gravitation and Cosmology

Indirect observation of gravitational wav

Neutron Binary System: PSR 1913 +16 - Timing Pulsars

Hulse & Taylor discovery (1974)

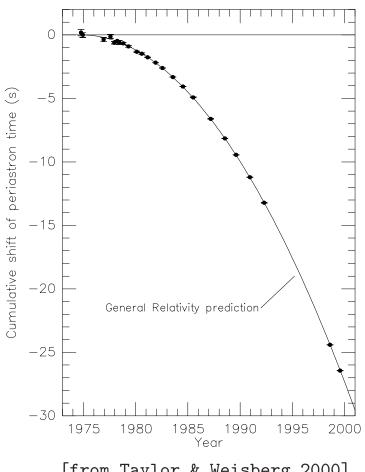
Separated by $\sim 10^6$ Km, $m_1=1.4 M_{\odot}$, $m_2=1.36 M_{\odot}$, eccentricity =0.617

- Prediction from GR: rate of change of orbital period
- Emission of gravitational waves:
 - due to loss of orbital energy
 - orbital decay in agreement with GR at the level of 0.5%

Hulse-Taylor binary: cumulative shift of periastron time

To show agreement with GR, they compared the observed orbital phase with a theoretical template phase

If f_b varies slowly with time, then to first order in a Taylor expansion


$$\Phi_b(t) = 2\pi f_b t + \pi \dot{f}_b t^2$$

Assuming that t_P is the periastron passage time defined as

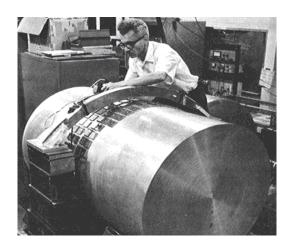
$$\Phi(t_p) = 2\pi N$$
 N being an integer

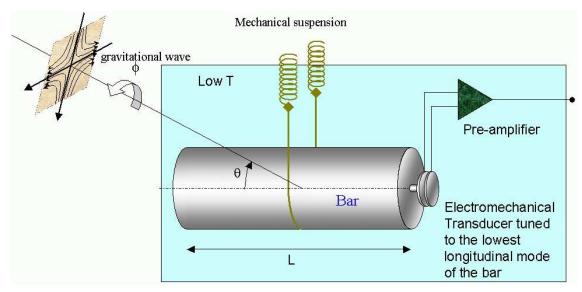
$$2\pi N = 2\pi f_b t_p + \pi \dot{f}_b t_p^2 \implies t_p - N/f_b = -\frac{1}{2} \dot{f}_b/f_b t^2$$

Hulse-Taylor binary: cumulative shift of periastron time

Q Mass B (M_{Sun}) 1.34 1.36 0 0.5 1.5 1 2 Mass A (M_{Sun})

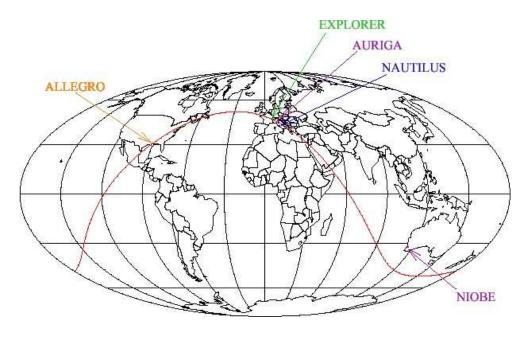
[from Taylor & Weisberg 2000]


[from Kramer et al. 2005]


Known double pulsar binaries

```
PSR J0737-3039 [Burgay et al. 03; Lyne et al. 2004] rot. period A 22.7 ms rot. period B 2773.6 ms orb. period 2 h and 45 min (will merge in 85 Myr!) e=0.088 distance \sim 0.6kpc (close!) \dot{P}=-1.20(8)10^{-12}
```

Direct observation with resonant-mass detectors


Pioneering work byJoe Weber at Maryland

Resonant-mass detectors in the world

Resonant bar or sphere detectors (GW frequency $\sim 1 \text{ kHz}$)

Nautilus (Rome) Explorer (CERN) Schenberg (Brasil) MiniGRAIL (Belgium) Allegro (Louisiana) Niobe (Perth) Auriga (Padova)

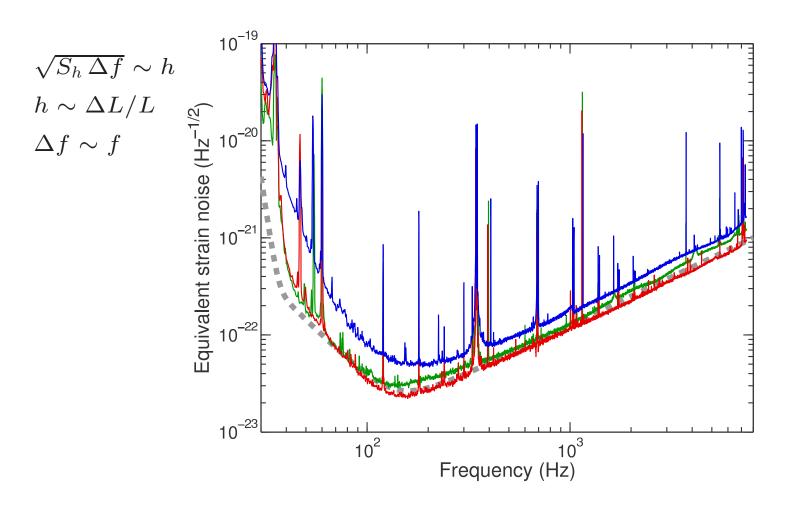
International network of GW interferometers(frequency band ~ 10 – 10^3 Hz)

LIGO at Livingston (Lousiana) ⇒

← LIGO at Hanford (Washington State)

Phys675: Introduction to Relativity, Gravitation and Cosmology

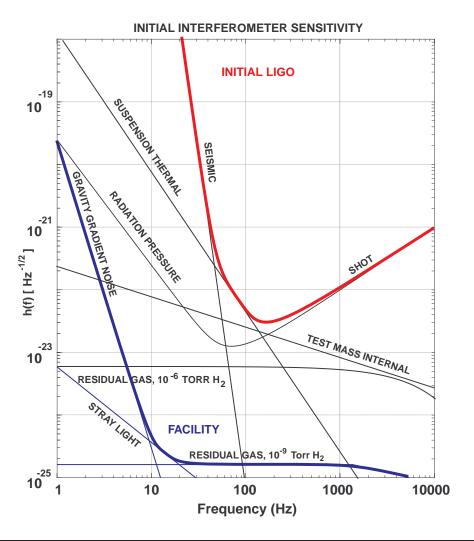
 $\mathsf{VIRGO}\;(\mathsf{France}\mathsf{-Italy}) \Rightarrow$



 \Leftarrow GEO 600 (UK-Germany)

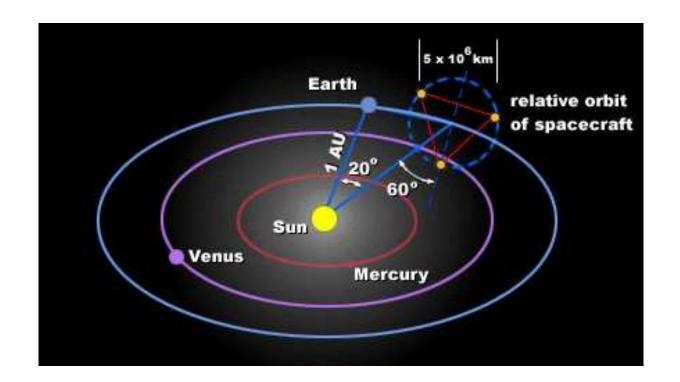

TAMA 300 (Japan)

Sensitivity of LIGO during run S5



A few LIGO/VIRGO/.... specifications and technical challenges

- Monitor test masses (~ 11 kg) with precision of $\sim 10^{-16}$ cm with laser's wavelength of 10^{-4} cm
- Remove/subtract all non-gravitational forces such as thermal noise, seismic noise, suspension noise, etc.
- \bullet Beam tube vacuum level $\sim 10^{-9}$ torr


Typical noises in ground-based detectors

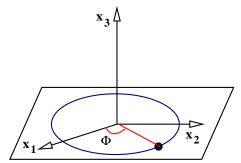
LISA: Laser Interferometer Space Antenna (frequency band: $10^{-4}-0.1~{\rm Hz}$)

LISA science goals complementary to ground-based interferometer ones

ESA/NASA mission in 2016?

A few LISA specifications and technical challenges

- \bullet Distance between spacecraft ~ 5 millions of km
- Monitor test masses inside spacecrafts with a precision of $\sim 10^{-9}$ cm ($h \sim 10^{-21}$)



- ullet Nd:YAG laser with wavelength $\sim 10^{-4}$ cm and power ~ 1 Watt
- Drag-free system to guarantee that only gravitational forces outside the spacecraft act on the proof masses
- Drag-free performances $\sim 10^{-15}\,\mathrm{m/sec^2}$ [LISA Pathfinder in 2010]

Binaries of black holes and/or neutron stars on circular orbit

Treating the two compact bodies as point particles with relative distance ${\bf x}$ and reduced mass μ :

$$x_1 = r \cos \Phi$$
 and $x_2 = r \sin \Phi$

$$Q_{ij} = \mu \left(x_i \, x_j - \frac{1}{3} \delta_{ij} \, x^2 \right)$$

$$Q_{11} = \mu r^2 (\cos^2 \Phi - 1/3), \quad Q_{22} = \mu r^2 (\sin^2 \Phi - 1/3)$$

$$Q_{33} = -\mu r^2/3, \quad Q_{12} = \mu r^2 \sin \Phi \cos \Phi$$

$$\dot{\Phi} = \sqrt{\frac{GM}{r^3}} = \omega$$
 [Newton law: $\omega^2 r = \frac{GM}{r^2}$]

taking 3 time derivatives of
$$Q \Rightarrow \mathcal{L}_{\rm GW} = -\frac{dE}{dt} = \frac{32}{5} \frac{G^4}{c^5} \frac{\mu^2 \, M^3}{r^5}$$

Binary coalescence time

$$E = \frac{1}{2}\mu \, v^2 - \frac{G\mu \, M}{r} = -\frac{G\mu \, M}{2r} \quad \Rightarrow \quad r = -\frac{G\mu \, M}{2E}$$

$$\dot{r} = \frac{dr}{dE} \frac{dE}{dt} = -\frac{64}{5} \frac{G\mu \, M^2}{r^3} \quad \text{integrating} \quad \Rightarrow \quad r(t) = \left(r_0^4 - \frac{256}{5} \, G\mu \, M^2 \, \Delta \tau_{\text{coal}}\right)^{1/4}$$

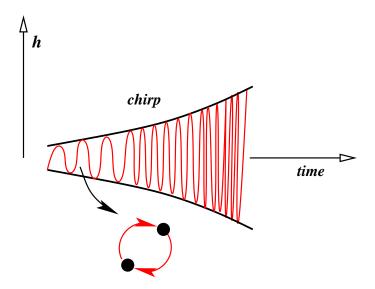
$$\mathbf{If} \qquad r(t_f) \ll r_0 \quad \Rightarrow \quad \Delta \tau_{\text{coal}} = \frac{5}{256} \frac{r_0^4}{G\mu \, M^2}$$

Examples:

- ullet LIGO/VIRGO/GEO/TAMA source: $M=(10+10)M_\odot$ at $r_0\sim 500$ km, $f_{
 m GW}\sim 40$ Hz, $T_0\sim 0.05{
 m sec}$ \Rightarrow $\Delta au_{
 m coal}\sim 1\,{
 m sec}$
- LISA source: $M=(10^6+10^6)M_\odot$ at $r_0\sim 200\times 10^6\,\mathrm{km}$, $f_\mathrm{GW}\sim 4.5\times 10^{-5}$ Hz, $T_0\sim 11$ hours \Rightarrow $\Delta au_\mathrm{coal}\sim 1\,\mathrm{year}$

Gravitational waves from compact binaries

• Mass-quadrupole approximation: $h_{ij} \sim \frac{G}{Rc^4} \ddot{Q}_{ij}$ $Q_{ij} = \mu \left(x_i \, x_j - r^2 \, \delta_{ij} \right)$


$$h \propto \frac{M^{5/3} \omega^{2/3}}{R} \cos 2\Phi$$

for quasi-circular orbits: $\omega^2 \sim \dot{\Phi}^2 = \frac{GM}{r^3}$

Chirp: The signal continuously changes its frequency and the power emitted at any frequency is very small!

$$h \sim rac{M^{5/3}\,f^{2/3}}{R}$$
 for $f \sim 100$ Hz, $M = 20 M_{\odot}$

$$R$$
 at $20~{
m Mpc}$ \Rightarrow $h\sim 10^{-21}$

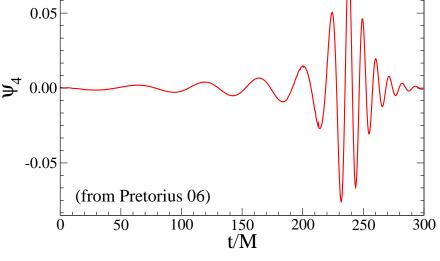
Typical features of coalescing black-hole binaries

•Inspiral: quasi-circular orbits

Throughout the inspiral $T_{\rm RR}\gg T_{\rm orb}\Rightarrow$ natural $adiabatic~parameter~\frac{\dot{\omega}}{\omega^2}=\mathcal{O}\!\left(\frac{v^5}{c^5}\right)$

For compact bodies $\frac{v^2}{c^2} \sim \frac{GM}{c^2r} \Rightarrow$ PN approximation: slow motion and weak field

"Chirping" if $T_{\rm obs} \gtrsim \omega/\dot{\omega}$

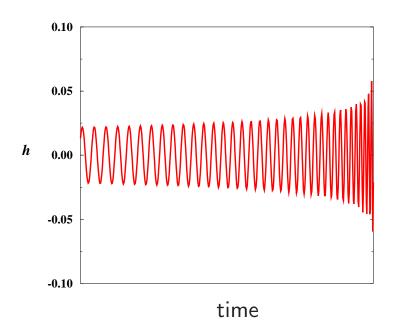

•Inspiral: spin-precessing orbits

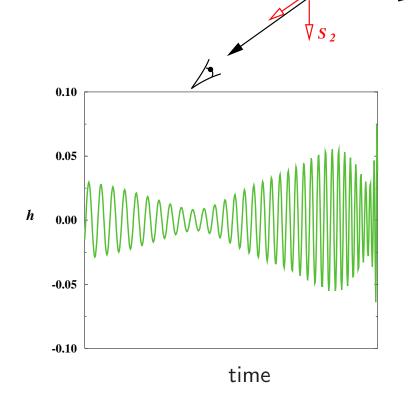
$$T_{
m RR}\gg T_{
m prec}\gg T_{
m orb}$$
; $\omega_{
m GW}=\{\omega_{
m prec},2\omega\}$

•Inspiral: eccentric orbits

$$T_{
m RR}\gg T_{
m peri\,prec}\gg T_{
m orb}$$
; $\omega_{
m GW}=\{N\,\omega,\cdots\}$

•Plunge-merger-ringdown

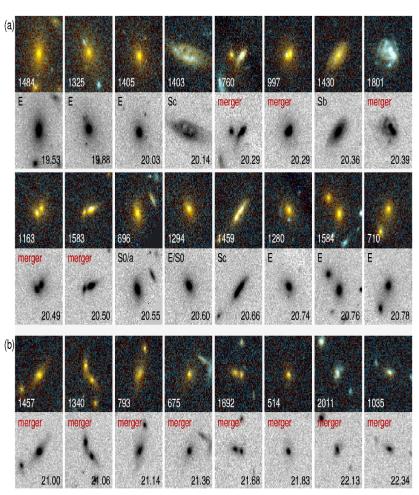

Numerical relativity; close-limit approximation; post-Newtonian resummation techniques


L Newt

Waveforms including spin effects

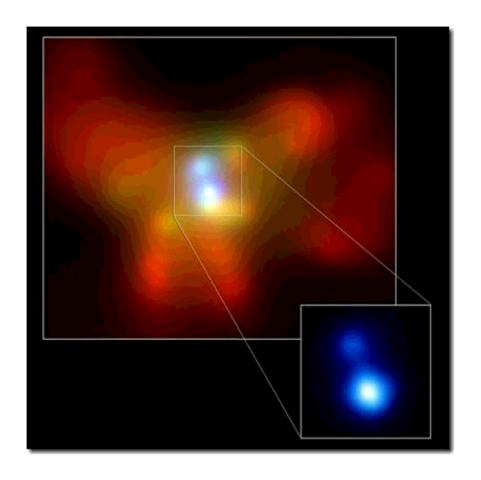
Maximal spins

$$M = 10M_{\odot} + 10M_{\odot}$$


Massive BH binaries

Massive BH binaries form following the mergers of galaxies and pregalactic structures

MS 1054-03 (cluster of galaxies) at z=0.83: about 20% are merging!


- (a) \rightarrow 16 most luminous galaxies in the cluster
- (b) \rightarrow 8 fainter galaxies

Masses and merger rates as function of redshift

van Dokkum et al., ApJ Letters, in press (astro-ph/9905394)

Image of NGC6240 taken by Chandra showing a butterfly shaped galaxy product of two smaller galaxies (two active giant BHs)

Massive BH binaries

Relativity:

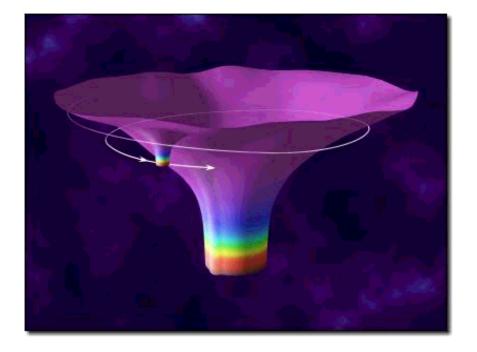
- From inspiraling post-Newtonian waveforms → precision tests of GR
- From merger waveforms (num. relativity) → tests of non-linear gravity
- Tests of cosmic censorship (is the final object a black hole?)
 and second law of BH mechanics (increase of horizon area)

Astrophysics:

 Cosmic history of massive BH formation from very high redshift to the present time

Very high S/N (very large z); high accuracy in determining binary parameters, but event rates uncertain $0.1-100\,\mathrm{yr}^{-1}$

Extreme mass-ratio inspiraling binaries


Small body spiraling into central body of $\sim 10^5 \text{--}10^7\,M_{\odot}$ out to \sim Gpc distance

Relativity:

- Relativistic orbits (test of GR)
- Map of massive body's external spacetime geometry. Extract multiple moments. Test the BH no hair theorem (is it a black hole?)

Astrophysics:

- Probe astrophysics of dense clusters around BH's in galactic nuclei
- Existence and population of BH's in galactic nuclei
- \bullet Infer massive body's spin and mass with accuracy $10^{-3}\text{--}10^{-5};$ sky position determined within $1^{\rm o};$ distance-to-source's accuracy of several 10%

