
Phys624 Quantization of EM field and gauge invariance Homework 9

Homework 9 Solutions

9.1 - Commutation relations
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9.2 - Hamiltonian and momentum

Part (i)

The Lagrangian with a Rξ gauge fixing term as the following stress energy tensor

The Feynman-t’Hooft gauge is obtained by taking ξ = 1.
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P 0 is the Hamiltonian.
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Part (ii)

9.3 - Residual gauge invariance

Part (i)

Since |ΨT 〉 contains only transverse polarizations, the longitudinal and time-like annihilation
operators kill the state.

[a3("k) − a0("k)] |ΨT 〉 = 0 (1)

Part (ii)

[a3("k) − a0("k)] |Ψ′
T 〉 = [a3("k) − a0("k)][1 + c[a†

3("k) − a†
0("k)]] |ΨT 〉 (2)

= c[a3("k) − a0("k)][a†
3("k) − a†

0("k)] |ΨT 〉 (3)

= c[a3("k)a†
3("k) + a0("k)a†

0("k)] |ΨT 〉 (4)

= c[ζ3δ
3(0) + a†

3("k)a3("k) + ζ0γ
3(0) + a†

0("k)a0("k)] |ΨT 〉 (5)

= 0 (6)
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where we have used the commutation relation,

[ar(k), a†
s(k

′)] = ζrδrsδ
3("k − "k′) (7)

Part (iii)

〈Ψ′
T |Aµ(x) |Ψ′

T 〉 = 〈ΨT | [1 + c∗[a3("k) − a0("k)]]Aµ[1 + c[a†
3("k) − a†

0("k)]] |ΨT 〉 (8)

= 〈ΨT |Aµ |ΨT 〉 (9)

+ c∗ 〈ΨT | [a3("k) − a0("k)]Aµ |ΨT 〉 (10)

+ c 〈ΨT |Aµ[a†
3("k) − a†

0("k)] |ΨT 〉 (11)

+ |c|2 〈ΨT | [a3("k) − a0("k)]Aµ[a†
3("k) − a†

0("k)] |ΨT 〉 (12)

It is clear that the fourth term doesn’t contribute, because it has an odd number of cre-
ation/annihilation operators sandwiched between identical states. Let us look at one of the
“mixed” terms,

〈ΨT |Aµ[a†
3("k) − a†

0("k)] |ΨT 〉 = 〈ΨT |
∫

d3q

(2π)
3

2

√

2ωq

3
∑

r=0

εµ
r (q)ar(q)e

−iq·x[a†
3("k) − a†

0("k)] |ΨT 〉

+ 〈ΨT |
∫

d3q

(2π)
3

2

√

2ωq

3
∑

r=0

εµ∗
r (q)a†

r(q)e
iq·x[a†

3("k) − a†
0("k)] |ΨT 〉

(13)

=

∫

d3q

(2π)
3

2

√

2ωq

〈ΨT | e−iq·x[εµ
3a3("q)a

†
3("k) − εµ

0a0("q)a
†
0("k)] |ΨT 〉

(14)

=

∫

d3q

(2π)
3

2

√

2ωq

〈ΨT | e−iq·x[εµ
3ζ3δ

3("q − "k) − εµ
0ζ0δ

3("q − "k)] |ΨT 〉

(15)

=
1

√

(2π)32ωk

e−ik·x(εµ
3 + εµ

0 ) (16)

Now, we can choose the time-like polarization in some direction nµ. Then, the longitudinal
polarization (k2 = 0 in equation 8.50 of L&P),

ε0 = nµ ε3 =
1√
k · n

kµ − nµ (17)

Therefore

c 〈ΨT |Aµ[a†
3("k) − a†

0("k)] |ΨT 〉 = c
1

√

(2π)32ωk

1√
k · n

kµe−ik·x ∼ ∂µ(e−ik·x) (18)
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We can treat the other mixed term above in exactly the same way, and the result can be
guessed to be the complex conjugate of the above,

c∗ 〈ΨT | [a3("k) − a0("k)]Aµ |ΨT 〉 = c∗
1

√

(2π)32ωk

1√
k · n

kµeik·x ∼ ∂µ(eik·x) (19)

Finally,

〈Ψ′
T |Aµ(x) |Ψ′

T 〉 = 〈ΨT |Aµ |ΨT 〉 +
1

√

(2π)32ωk

1√
k · n

(ic∂µ(e−ik·x) − ic∗∂µ(eik·x)) (20)

= 〈ΨT |Aµ + ∂µθ(x) |ΨT 〉 (21)

where θ ∼ Re(ce−ik·x).

9.4 - Photon propagator

Assume initially for simplicity that x0 > x′0. The propagator,

〈0|T [Aµ(x)Aν(x′)] |0〉 = 〈0|

[

∫

d3q

(2π)
3

2

√

2ωq

3
∑

r=0

εµ
r (q)ar(q)e

−iq·x + εµ∗
r (q)a†

r(q)e
iq·x

∫

d3k

(2π)
3

2

√
2ωk

3
∑

s=0

εν
s (k)as(k)e−ik·x′

+ εν∗
s (k)a†

s(k)eik·x′

]

|0〉

(22)

=

∫

d3qd3k

(2π)3
√

4ωkωq

3
∑

r=0

3
∑

s=0

εµ
r (q)e−iq·xεν∗

s (k)eik·x′ 〈0|T
[

ar(q)a
†
s(k)

]

|0〉

(23)

=

∫

d3qd3k

(2π)3
√

4ωkωq

3
∑

r=0

3
∑

s=0

εµ
r (q)e−iq·xεν∗

s (k)eik·x′

ζrδrsδ
3("k − "q) (24)

=

∫

d3k

(2π)32ωk

3
∑

r=0

eik·(x−x′)εµ
r (k)εν∗

s (k)ζr (25)

Using
3

∑

r=0

ζrε
µ
r ε

∗ν
r = −gµν (26)

We will get the same results with x, x′ interchanged when x0 < x′0. Therefore, the full
Feynman propagator is,

〈0|T [Aµ(x)Aν(x′)] |0〉 = −
gµν

(2π)3

∫

d3k

2ωk

eik·(x−x′)θ(x0 − x′0) + e−ik·(x−x′)θ(x′0 − x0) (27)

= −
gµν

(2π)4

∫

d4k
e−ik·(x−x′)

k2 + iε
(28)

The last step is the standard Feymnan prescription (described for example in P&S section
2.4). The +iε in the denominator gives the propagator the correct pole structure so that the
dk0 integral (equation 28)along the real line yields the time-ordered form in equation 27.
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9.5 - Gauge invariance for charged scalar field

9.6 - Covariant derivative for fermion field
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9.7 - Axial-vector current

Part (i)

Under an infinitesimal transformation,

ψ → eiαγ5

ψ (29)

the shift in the field is given by,

αδψ = iαγ5ψ (30)

Therefore, the Noether current corresponding to this tranformation is,

jµ(x) =
∂L

∂(∂µψ)
δψ (31)

= −ψ̄γµγ5ψ (32)

Part (ii)

Under the transformation the kinetic term,

ψ̄(i∂µγ
µ)ψ → eiαγ5ψ(i∂µγ

µ)eiαγ5

ψ (33)

= (eiαγ5

ψ)†γ0(i∂µγ
µ)eiαγ5

ψ (34)

= (ψ)†e−iαγ5

γ0(i∂µγ
µ)eiαγ5

ψ (35)

= (ψ)†γ0eiαγ5

(i∂µγ
µ)eiαγ5

ψ (36)

= (ψ)†γ0(i∂µγ
µ)eiαγ5

eiαγ5

ψ (37)

= ψ̄(i∂µγ
µ)ψ (38)

where we have used the following fact.

eiαγ5

γµ = γµe−iαγ5

(39)

Therefore, the kinetic term in the Lagrangian is invariant under the transformation.
What about the mass term?

mψ̄ψ → m eiαγ5ψeiαγ5

ψ (40)

= m (ψ)†γ0eiαγ5

eiαγ5

ψ (41)

'= ψ̄(i∂µγ
µ)ψ (42)

The mass term is not invariant under this transformation.

Part (iii)

In the limit m → 0, the total Lagrangian is invariant under the transformation.
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Part (iv)

The divergence of the current,

∂µjµ = ∂µ

[

ψ̄γµγ5ψ
]

(43)

= (∂µψ̄)γµγ5ψ + ψ̄γµγ5(∂µψ) (44)

= (∂µψ̄)γµγ5ψ − ψ̄γ5γµ(∂µψ) (45)

Using the Dirac equation ,

(i/∂ − m)ψ = 0 (46)

and its conjugate version,

iγµ∂µψ − mψ = 0 (47)

⇒− i∂µψ
†γµ† − mψ† = 0 (48)

⇒− i∂µψ
†γ0γµγ0 − mψ† = 0 (49)

⇒− i∂µψ̄γµ − mψ̄ = 0 (50)

We find the divergence is,

∂µjµ = (∂µψ̄)γµγ5ψ − ψ̄γ5γµ(∂µψ) (51)

= imψ̄γ5ψ − ψ̄γ5(−imψ) (52)

= 2imψ̄γ5ψ (53)

Part (v)

The current is not conserved because it the transformation is not a symmetry of the La-
grangian. We found earlier that it does become a symmetry in the limit m → 0, in which
limit the divergence of the current also vanishes. This is expected from Noether’s theorem.

Part (vi)

We need to choose a representation for the γ matrices. The most convenient one to use in
this case is the chiral (or Weyl) basis.

γµ =

(

0 σµ

σ̄µ 0

)

(54)

γ5 =

(

I 0
0 −I

)

(55)

where σµ = (I, "σ) and σ̄µ = (I,−"σ).
We can now break up the field ψ into its two chiralities ψL and ψR,

ψ = (L + R)ψ =

(

ψL

ψR

)

(56)
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where L, R = 1
2(1 ± γ5) are the usual chirality projectors.

The transformation,

ψ → eiαγ5

ψ (57)

can be written as the transformation of each chiral fermion,
(

ψL

ψR

)

→ eiαγ5

(

ψL

ψR

)

(58)

=

(

eiαψL

e−iαψR

)

(59)

using the fact that γ5 is diagonal in this basis. The transformation rotates the two chiralities
in opposite directions (in contrast with a “vector” transformation, ψ → exp(iα)ψ, which
rotates the two chiralities in the same direction).

Part (vii)

The Lagrangian in the Weyl basis is given by,

L =
(

ψ†
L ψ†

R

)

(

0 I
I 0

) [

i∂µ

(

0 σµ

σ̄µ 0

)

− m

] (

ψL

ψR

)

(60)

=
(

ψ†
L ψ†

R

)

[

i∂µ

(

σ̄µ 0
0 σµ

)

− m

(

0 I
I 0

)](

ψL

ψR

)

(61)

We see that the kinetic term is diagonal in the chirality basis (i.e. it does not couple different
chiralities). The mass term, however, is off diagonal, and couples the left-chirality fermion
with the right-chirality fermion,

L = ψ†
Li∂µσ̄µψL + ψ†

Li∂µσ
µψL − m(ψ†

RψL + ψ†
LψR) (62)

Part (viii)

Thus, we can understand why the divergence of the current depended on the mass. The
mass term couples the two chiralities, which does not allow us to perform independent (or
in this case, opposite) rotations on ψL and ψR.

These independent rotations are called chiral rotations(for obvious reasons), and when
they are a good symmetry of the Lagrangian, the Lagrangian is said to possess chiral sym-
metry. A (Dirac) mass term explicitly breaks the chiral symmetry.

Part (ix)

If the current is conserved (i.e. chiral symmetry is preserved), then there is no problem in
coupling this current to an electromagnetic field. However, if there is a mass term which
breaks chiral symmetry, a coupling of the form jµAµ will no longer be gauge-invariant.
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