
Phys624 Specific calculations of S-matrix elements - I Homework 8

Homework 8 Solutions

8.1 - Simplifying spinors

8.2 - Decay of scalar particle into electron positron pair

8.2.1 Specific fermion helicities

Part (i)

The expression we want to evaluate can be rewritten as,
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Part (ii)

Even though the sum is over s and s′ (which would be summing over four terms), angular
momentum forces two of these to be zero. In other words, given the electron spin, the positron
spin is forced to be its opposite.

Part (iii)

To conserve linear momentum, the outgoing electron and positron momenta parallel to the
z-axis. Let us say that the electron is traveling along the +z direction.

Along the z axis, the component of orbital angular momentum is zero (~r×~p). Therefore,
in order for the total angular momentum in this direction to be conserved (Jz = 0), the total
spin of the electron and positron has to be zero. Therefore, if the electron spin points along
the direction of its motion (+z direction), then the positron spin also points in the direction
of motion of the positron (−z direction). Therefore, it is expected that both positron and
the electron are emitted with the same helicity.

Part (iv)

The initial angular momentum is zero. Since total angular momentum is conserved, the total
angular momentum in the final state should also be zero.

We are given that the orbital angular momentum for the electron-positron system is
L = 1. Then, the total spin of the electron-positron system has to be S = 1, so that the
total J = 0.

Since the S = 1 state contains the Sz = 0 state where both spins point in opposite
direction, this is consistent with part(ii) above.

Part (v)

Yes. Different helicities are different final states, and hence the corresponding amplitudes
do not interfere. The only interference is when there are multiple amplitudes for the same
initial and final states. The two decay widths add to give the total decay width.

3



Phys624 Specific calculations of S-matrix elements - I Homework 8

8.2.2 Modified interaction

Part (i)

We showed in Homework 6 that ψ̄γ5ψ is odd under parity. Therefore, if φ is also odd under
parity, then Lint is invariant under parity.

Part (ii)

The spin-sum that arises in this case is
∑

s,s′
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∣

∣
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∣

∣

∣
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= Tr
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γ5‡ = γ0γ5†γ0 = −γ5 (6)

Therefore,
∑
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∣

∣
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∣
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= −Tr
[

(/p+m)γ5(/p
′ −m)γ5

]

(7)

= Tr
[

(/p+m)(/p
′ +m)

]

(8)

= 4p · p′ + 4m2 (9)

Now,

(p+ p′)2 = M2 (10)

⇒ 2p · p′ = M2 − p2 − p′2 = M2 − 2m2 (11)

The decay rate can then be written in terms of the phase space ρ as,

Γ =
|h|2
2M

2M2ρ (12)

=
|h|2
8π

M

√

1 − 4m2

M2
(13)

where we have used the above formulae from Lahiri and Pal.

Part (iii)

We follow the logic of Problem 5.4.2.
The parity of the initial state is the intrinsic parity of φ, Pφ = −1.
The parity of final state Pff̄ = (−1) × (−1)L. Remember that the anti-fermion has an

opposite intrinsic parity to the fermion, so the fermion-anti-fermion pair always have a net
intrinsic parity of −1.

Therefore, in order for parity to be conserved (which it should be, since Lint was argued
to preserve parity above), L should be even.

Now, let us look at angular momentum conservation.
Initial angular momentum Jφ = 0.
Final angular momentum Jff̄ = Lff̄ + Sff̄ , where Sff̄ = 0, 1
Since L has to be even, the final state angular momenta are L = 0, S = 0, i.e. the

electron-positron pair is in s-wave.
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Part (iv)

We can deduce if the final state is in the s-wave or not by looking at the velocity dependence
of the transition matrix element squared (|M|2). For s-wave, it is expected to be independent
of the velocity (∼ β0), and for the p-wave, it is expected to depend on the square of the
velocity (∼ β2).

In the rest frame of the decaying scalar, the velocity of the electron/positron is given by,

β =

√

1 − 4m2

M2
(14)

We see that the matrix element for the decay is simply,

|M|2 = |h|2M (15)

and therefore the decay products are in the s-wave.

8.2.3 Most general Yukawa-type interaction

Part (i)

We are given,

Lint = −ψ̄(hS + hPγ5)ψφ (16)

= −ψ̄(hLL+ hRR)ψφ (17)

We need to calculate the spin sum as before,

∑

s,s′

∣

∣

∣
us(~p )(hLL+ hRR)vs′(~p
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∣

∣

∣

2

= Tr
[

(/p+m)(hLL+ hRR)(/p
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]

(18)

= Tr
[

(/p+m)(hLL+ hRR)(/p
′ −m)(h∗LR + h∗RL)

]

(19)

= Tr
[

/p(hLL+ hRR)/p
′(h∗LR + h∗RL)

]

−m2Tr [(hLL+ hRR)(h∗LR + h∗RL)] (20)

Since the trace over a single gamma matrix (with or without additional projectors) is always
zero, we don’t get a term proportional to a single power of m. Note now,

/pL = R/p (21)

because of anti-commutation of γ5 with γµ.

∑
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= Tr
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]
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= 2p · p′(|hL|2 + |hR|2) − 2m2(hLh
∗
R + hRh

∗
L) (23)
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where we have carried out the trace as before. The total decay width is now easily given as
before,

Γ =
1

2M

[

2p · p′(|hL|2 + |hR|2) − 2m2(hLh
∗
R + hRh

∗
L)

]

ρ (24)

=
1

2M
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∗
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]

ρ (25)

=
1

16πM

[
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∗
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∗
L)

]

√

1 − 4m2

M2
(26)

Part (ii)

For hL = hR,

Γ =
1

16πM

[

(M2 − 2m2)(2|hL|2) − 2m2(2|hL|2)
]

√

1 − 4m2

M2
(27)

=
|hL|2M

8π

[

1 − 4m2

M2

]
3

2

(28)

which is the result in Lahiri and Pal.
Similarly, For hL = −hR,

Γ =
1

16πM

[

(M2 − 2m2)(2|hL|2) + 2m2(2|hL|2)
]

√

1 − 4m2

M2
(29)

=
|hL|2M

8π

[

1 − 4m2

M2

]
1

2

(30)

which is the result derived above in Problem 8.2.2(ii).

Part (iii) and (iv)

We can break up the total decay width into three pieces,

ΓL =
1

16πM

[

(M2 − 2m2)|hL|2
]

√

1 − 4m2

M2
(31)

ΓR =
1

16πM

[

(M2 − 2m2)|hR|2
]

√

1 − 4m2

M2
(32)

Γint =
−2m2

16πM
[(hLh

∗
R + hRh

∗
L)]

√

1 − 4m2

M2
(33)

We see that there is a non-zero interference term between hL and hR coupling. Since we are
not neglecting masses anymore, the different chirality states are not helicity eigenstates and
thus not distinct final states (unlike in the massless limit). Therefore, we get an interference
between two chirality amplitudes.

We see that the interference term is proportional to m2, so as expected, the interference
term goes to zero in the massless limit.
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8.3 - Measuring chirality

The general form of interaction is

Lint = 2
√

2GF ψ(νe)γ
λPeψ(e) ψ(µ)γλPµψ(νµ) (34)

Pe and Pµ are projectors which can be chosen to be L,R independently to investigate the
helicity structure of this interaction.

8.3.1 R for both electron and muon parts

Part (i) Pe = Pµ = R

In this case,

Mfi =
GF√

2
ū(νe)(k

′)γλ(1 + γ5)u(e)(p) ū(µ)(p
′)γλ(1 + γ5)u(νµ)(k) (35)

Since we have both left-handed and right-handed neutrinos, an initially unpolarized beam
will contain both these components. Therefore, we should add over both helicities and then
divide by two for the initial state spin-sum.

In this particular case, since we use a R projector, only the right-handed helicities will
contribute when we sum over the spins. Squaring and summing over final states and aver-
aging over initial states,

|Mfi|2 =
1

4

∑

spin

|Mfi|2 (36)

=
G2

F

8
Tr

[

(/p+me)γ
ρ(1 + γ5)/k

′
γλ(1 + γ5)

]

Tr
[

/kγρ(1 + γ5)(/p
′ +mµ)γλ(1 + γ5)

]

(37)

=
G2

F

2
Tr

[

(/p+me)γ
ρ(1 + γ5)/k

′
γλ

]

Tr
[

/kγρ(1 + γ5)(/p
′ +mµ)γλ

]

(38)

=
G2

F

2
Tr

[

/pγ
ρ(1 + γ5)/k

′
γλ

]

Tr
[

/kγρ(1 + γ5)/p
′γλ

]

(39)

=
G2

F

2
pαk

′
βk

σp′δTr
[

γαγρ(1 + γ5)γβγλ
]

Tr
[

γσγρ(1 + γ5)γδγλ

]

(40)

= 8G2
Fpαk

′
βk

σp′δ
[

gαρgβλ − gαβgρλ + gαλgβρ + iǫβλαρ
]

[gσρgδλ − gσδgρλ + gσλgδρ + iǫδλσρ]

(41)

= 8G2
Fpαk

′
βk

σp′δ
[

2gα
σg

β
δ + 2gα

δ g
β
σ − ǫαβλρǫσδλρ

]

(42)

= 8G2
Fpαk

′
βk

σp′δ
[

2gα
σg

β
δ + 2gα

δ g
β
σ + 2(gα

σg
β
δ − gα

δ g
β
σ)

]

(43)

= 32G2
F p · k p′ · k′ (44)

This is the same as the result obtained in Lahiri and Pal. The kinematics are obviously
identical (Section 7.5.1 in L& P), so the differential cross-section is the same as obtained in
Equation 7.130 (modulo the additional factor of 2 discussed above).

dσ

dΩ
=
G2

F

8π2

(s−m2
µ)2

s
(45)

7



Phys624 Specific calculations of S-matrix elements - I Homework 8

8.3.2 R for electron part and L for muon part

Part (i) Pe = R,Pµ = L

Now, in this case,

Mfi =
GF√

2
ū(νe)(k

′)γλ(1 + γ5)u(e)(p) ū(µ)(p
′)γλ(1 − γ5)u(νµ)(k) (46)

The calculation proceeds in the same way. Squaring and summing over final states and
averaging over initial states,

|Mfi|2 =
1

4

∑

spin

|Mfi|2 (47)

=
G2

F

8
Tr

[

(/p+me)γ
ρ(1 + γ5)/k

′
γλ(1 + γ5)

]

Tr
[

/kγρ(1 − γ5)(/p
′ +mµ)γλ(1 − γ5)

]

(48)

=
G2

F

2
pαk

′
βk

σp′δTr
[

γαγρ(1 + γ5)γβγλ
]

Tr
[

γσγρ(1 − γ5)γδγλ

]

(49)

= 8G2
Fpαk

′
βk

σp′δ
[

gαρgβλ − gαβgρλ + gαλgβρ + iǫβλαρ
]

[gσρgδλ − gσδgρλ + gσλgδρ − iǫδλσρ]

(50)

= 8G2
Fpαk

′
βk

σp′δ
[

2gα
σg

β
δ + 2gα

δ g
β
σ + ǫαβλρǫσδλρ

]

(51)

= 8G2
Fpαk

′
βk

σp′δ
[

2gα
σg

β
δ + 2gα

δ g
β
σ − 2(gα

σg
β
δ − gα

δ g
β
σ)

]

(52)

= 32G2
F p · p′ k · k′ (53)

The kinematic dependence is different from the case above. We can use the expressions
derived in the lectures (and the notes on neutrino-electron scattering),

p · p′ =
(s+m2

e)(s+m2
µ) − (s−m2

e)(s−m2
µ) cos θ

4s
(54)

k · k′ =
(s−m2

e)(s−m2
µ)(1 − cos θ)

4s
(55)

The differential cross-section is,

dσ

dΩ
=

32G2
F

64π2s

[

s−m2
µ

s−m2
e

] [

(s+m2
e)(s+m2

µ) − (s−m2
e)(s−m2

µ) cos θ

4s

] [

(s−m2
e)(s−m2

µ)(1 − cos θ)

4s

]

(56)

=
G2

F (s−m2
e)(s−m2

µ)3

32π2s3
(1 − cos θ)

[

(s+m2
e)(s+m2

µ)

(s−m2
e)(s−m2

µ)
− cos θ

]

(57)

Part (ii)

When the angle between the muon and electron is zero, θ = 0, the differential cross-section
vanishes, even without me or mµ = 0. When me = mµ = 0, the second term additionally
vanishes.
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The Dirac structure for the muon part (with the L insertion)

ū(µ)(p
′)γλLu(νµ)(k) = ū(µ)(p

′)γλLLu(νµ)(k) (58)

= ū(µ)(p
′)RγλLu(νµ)(k) (59)

= u†(µ)(p
′)γ0RγλLu(νµ)(k) (60)

= u†(µ)(p
′)Lγ0γλLu(νµ)(k) (61)

= (Lu)†(µ)(p
′)γ0γλLu(νµ)(k) (62)

= Lu(µ)(p
′)γλLu(νµ)(k) (63)

Therefore, this particular projector insertion creates a left-handed muon in the final state
and annihilates a left-handed νµ in the initial state. Similarly, we can show that the electron
and νe are right-handed particles.

Now we can understand the vanishing of differential cross-section in terms of angular
momentum. Let us assume that the incoming electron was moving along the z-axis with
its momentum in the +z direction. Along the beam direction (which is both incoming and
outgoing particles directions for θ = 0), the orbital angular momentum is zero. The initial
state electron is right-handed and the muon neutrino is left-handed, so both their spins
point in the +z direction (along the direction of motion for a left handed electron, opposite
to the direction of motion for the right handed muon neutrino). For θ = 0, the outgoing
muon moves in the +z direction and since it is a left-handed fermion, its spin points in −z
direction. Similarly the spin of the outgoing electron neutrino also points in the −z direction.
Since angular momentum in the initial and final states are forced to be different at θ = 0,
the differential cross-section at this angle vanishes.

8.3.3 No L,R

Part (i) Pe = Pµ = 1

Now there are no projectors in the amplitude.

Mfi =
4GF√

2
ū(νe)(k

′)γλu(e)(p) ū(µ)(p
′)γλu(νµ)(k) (64)

The calculation proceeds in the same way. Squaring and summing over final states and
averaging over initial states,

|Mfi|2 =
1

4

∑

spin

|Mfi|2 (65)

= 2G2
FTr

[

(/p+me)γ
ρ/k

′
γλ

]

Tr
[

/kγρ(/p
′ +mµ)γλ

]

(66)

= 32G2
Fpαk

′
βk

σp′δ
[

gαρgβλ − gαβgρλ + gαλgβρ
]

[gσρgδλ − gσδgρλ + gσλgδρ] (67)

= 32G2
Fpαk

′
βk

σp′δ
[

2gα
σg

β
δ + 2gα

δ g
β
σ

]

(68)

= 64G2
F (p · p′ k · k′ + p · k p′ · k′) (69)
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The differential cross-section is,

dσ

dΩ
=
G2

F (s−m2
e)(s−m2

µ)3

16π2s3
(1 − cos θ)

[

(s+m2
e)(s+m2

µ)

(s−m2
e)(s−m2

µ)
− cos θ

]

+
G2

F

4π2

(s−m2
µ)2

s
(70)

Part (ii)

We see that the differential cross-section is twice the sum of the results we got in part 8.2.1
and 8.2.2. This is easily understood to be the sum of contributions from the LL,LR,RL
and RR projectors.

In general we would expect there to be no interference in the helicity amplitudes in the
massless limit (since chirality = helicity in that limit), as discussed in the decay example.
However, in this case it turns out to be true even when the electrons and muons are massive
(the neutrinos are still assumed to be massless though). This can be understood as follows.

We can always move around the chirality projector Pe in the amplitude so that the
projectors act on the neutrino spinors. Since the neutrino is massless, the chirality projector
is also the helicity projector. Therefore, choosing different values of Pe, Pµ can be thought as
choosing different helicities for the neutrinos in the initial and final states. Different neutrino
helicities are distinct final states, and hence these helicity amplitudes do not interfere with
one another (even though chirality 6= helicity for e, µ, i.e. the final states for e, µ are not
distinct helicity eigenstates).

10


