
Phys624 Formalism for interactions Homework 6

Homework 6 Solutions

6.1 - Restriction on interaction Lagrangian

6.1.1 - Hermiticity
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6.1.2 - Lorentz invariance

We borrow the following results from homework 4. Under a Lorentz transformation, the
bilinears transform as follows,

ψ → Λ 1

2

ψ (1)

ψ̄ → ψ̄Λ−1
1

2

(2)

and the fact that Λ 1

2

commutes with γ5. This can be derived using the fact that γ5 anti-
commutes with all γµ.

Part (i)

It is now easy to calculate the transformation property,

ψ̄γ5ψ → ψ̄Λ−1
1

2

γ5Λ 1

2

ψ (3)

= ψ̄γ5Λ−1
1

2

Λ 1

2

ψ (4)

= ψ̄γ5ψ (5)

Thus, it transforms the same way as a scalar under continuous Lorentz transformation. As
shown elsewhere in this homework, this operator is odd under parity, so it is a “pseudo-scalar”
operator.

Part (ii)

Given

Lint = (ψ̄γ5ψ)(ψ̄γ5ψ) (6)

Since each of the terms is separately Lorentz (pseudo-scalar), the interaction term is Lorentz
invariant as well.

Part (iii)

Repeating the calculation above,

Λν
µψ̄γµγ5ψ → ψ̄Λ−1

1

2

Λν
µγ5Λ 1

2

ψ (7)

= ψ̄Λ−1
1

2

Λν
µγ

µΛ 1

2

γ5ψ (8)

= ψ̄γνγ5ψ (9)

where we have used Λ−1
1

2

Λν
µγ

µΛ 1

2

= γν , proved in an earlier homework.

Thus, this spinor transforms like a vector under continuous Lorentz transformations.
Again, this is seen to behave opposite to a vector under parity, so it is an “axial-vector” or
a “pseudo-vector”.
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Part (iv)

Given,

Lint = (ψ̄γµγ5ψ)(ψ̄γµγ
5ψ) (10)

Since each of the terms above transforms honestly with the Lorentz index, the interaction
made from contracted Lorentz indices is a Lorentz invariant.

6.1.3 - Renormalizability

The basis of estimating mass dimensions is the fact that the action is dimensionless in natural
units (! = c = 1). This can be seen from the time-evolution operator (∼ ei

R

dtH) or from
the path-integral (∼

∫

eiS).

Part (i)

The action for the kinetic term is

S =

∫

d4x ψ̄ /∂ ψ (11)

The γ-matrices and the Lorentz indices are unimportant for the dimension calculation. We
get 4 inverse powers of mass from the volume integration, one power of mass from the
derivative. Therefore,

2[ψ] − 4 + 1 = 0 (12)

⇒ [ψ] =
3

2
(13)

Part (ii)

The action for the mass term,

S =

∫

d4x mψ̄ψ (14)

Thus,

2[ψ] − 4 + [m] = 0 (15)

⇒ [m] = 1 (16)

Part (iii)

We need the dimension of the scalar field. The action for the Yukawa term (with the kinetic
term for the scalar included),

S =

∫

d4x λφψ̄ψ +
1

2
∂µφ∂µφ (17)
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Thus,

2[φ] − 4 + 2 = 0 (18)

⇒ [φ] = 1 (19)

[φψ̄ψ] − 4 + [λ] = 0 (20)

⇒ [λ] = 0 (21)

Part (iv)

For the four-fermion interaction

S =

∫

d4x κ(ψ̄ψ)(ψ̄ψ) (22)

4[ψ] − 4 + [κ] = 0 (23)

⇒ [κ] = −2 (24)

Since the co-efficient has negative mass-dimensions, it turns out that this interaction is non-
renormalizable.

6.1.4 - Parity invariance

Part (i)

Under parity,

ψ → ψp = ηpγ
0ψ (25)

where |ηp|2 = 1. Therefore,

ψ̄γ5ψ → ψ†
pγ

0γ5ψp (26)

= |ηp|
2ψ†γ0†γ0γ5γ0ψ (27)

= ψ†γ5γ0ψ (28)

= −ψ†γ0γ5ψ (29)

= −ψ̄γ5ψ (30)

Therefore, ψ̄γ5ψ is odd under parity.

Part (ii)

Repeating the same calculation,

ψ̄γµγ5ψ → ψ†
pγ

0γµγ5ψp (31)

= |ηp|
2ψ†γ0†γ0γµγ5γ0ψ (32)

= ψ†γµγ5γ0ψ (33)

= −ψ†γµγ0γ5ψ (34)
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The commutation property of γµ and γ0 can be characterized as

γµγ0 = (−1)µγ0γµ (35)

where (−1)µ = 1 for µ = 0 and (−1)µ = −1 for µ = 1, 2, 3.

−ψ†γµγ0γ5ψ = −(−1)µψ†γ0γµγ5ψ (36)

ψ̄γµγ5ψ → −(−1)µψ̄γµγ5ψ (37)

Therefore, the parity eigenvalue for ψ̄γµγ5ψ is −(−1)µ.

Part (iii)

The term in the Lagrangian transforms as follows under parity,

hφψ̄

(

1 − γ5

2

)

ψ + h∗φψ̄

(

1 + γ5

2

)

ψ → hφψ̄

(

1 + γ5

2

)

ψ + h∗φψ̄

(

1 − γ5

2

)

ψ (38)

since the term with γ5 is odd under parity. Therefore, for parity to be a good symmetry,
h = h∗, or in other words h should be real.
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6.2 - Wick’s theorem (Ex 5.3 L & P)

In going from the scalar to fermions, we have to be careful about one fact. In all the
definitions of time-ordering and normal-ordering, whenever we have to move a fermionic
operator across another one, we introduce a negative sign. This is a matter of definition of
the time-ordering and normal-ordering. In this problem we will see that this definition is
useful in that it allows us to use Wick’s theorem and all of subsequent Feynman diagram
technology and makes the definitions consistent with anti-commutations.

Consider the product of two fermion operators. In analogy with the scalar case, we can
decompose the fields into the part with creation operator (ψ−) and the part with annihilation
operator (ψ+).

ψ(x)ψ′(x′) = ψ+(x)ψ′
+(x′) + ψ+(x)ψ′

−(x′) + ψ−(x)ψ′
−(x′) + ψ−(x)ψ′

+(x′) (39)

= ψ+(x)ψ′
+(x′) − ψ′

−(x′)ψ+(x) + {ψ+(x), ψ′
−(x′)} + ψ−(x)ψ′

−(x′) + ψ−(x)ψ′
+(x′)
(40)

where we have introduced the anti-commutator to make all the other terms normal-ordered
(i.e. to have all the annihilation operators to the right of all the creation operators). Note
that the anti-commutator of the two operators is a c-number. Therefore,

{ψ+(x), ψ′
−(x′)} = 〈0| {ψ+(x), ψ′

−(x′)} |0〉 (41)

= 〈0|ψ+(x)ψ′
−(x′) |0〉 (42)

= 〈0| (ψ+(x) + ψ−(x))(ψ′
+(x′) + ψ′

−(x′)) |0〉 (43)

= 〈0|ψ(x)ψ′(x′) |0〉 (44)

where |0〉 is the vacuum state.

ψ(x)ψ′(x′) =: ψ(x)ψ′(x′) : + 〈0|ψ(x)ψ′(x′) |0〉 (45)

where we have used the following definition of the normal-ordered product.

: ψ(x)ψ′(x′) : = ψ+(x)ψ′
+(x′) − ψ′

−(x′)ψ+(x) + ψ−(x)ψ′
−(x′) + ψ−(x)ψ′

+(x′) (46)

Notice that the normal-ordered product has a negative sign in the second term, when we
move a fermion operator around the other.

Now, the time-ordered product for two fermions,

T (ψ(x)ψ′(x′)) = θ(t − t′)ψ(x)ψ′(x′) − θ(t′ − t)ψ′(x′)ψ(x) (47)

Therefore,

T (ψ(x)ψ′(x′)) = θ(t − t′) [ : ψ(x)ψ′(x′) : + 〈0|ψ(x)ψ′(x′) |0〉]

− θ(t′ − t) [ : ψ′(x′)ψ(x) : + 〈0|ψ′(x′)ψ(x) |0〉] (48)

= θ(t − t′) [ : ψ(x)ψ′(x′) : + 〈0|ψ(x)ψ′(x′) |0〉]

− θ(t′ − t) [− : ψ(x)ψ′(x′) : + 〈0|ψ′(x′)ψ(x) |0〉] (49)

=: ψ(x)ψ′(x′) : + 〈0| θ(t − t′)ψ(x)ψ′(x′) − θ(t′ − t)ψ′(x′)ψ(x) |0〉 (50)

=: ψ(x)ψ′(x′) : + 〈0| T (ψ(x)ψ′(x′)) |0〉 (51)

which is the statement of Wick’s theorem.
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