
PHY 624 (Fall 2010):
Advanced Quantum Mechanics

Take-home Final

General guidelines:

(i) The final is due by noon, Wedesday, December 15 in the box outside my office,
Rm. 4119.

(ii) The four problems (with a few parts in each) are (roughly) in increasing order of diffi-
culty/length of calculation.

(iii) All concepts, identities etc. you need for solving these problems are contained in
lecture/homework notes and in Lahiri and Pal.

(iv) You can simply “borrow” (i.e., no need to repeat the derivation) any results for cross-
sections or Feynman amplitudes or phase space factors from lecture/homework/Lahiri and
Pal for this purpose.

(v) For these scattering problems, work to second order in coupling constant, say e (in the
Feynman amplitude).

(vi) You should avoid discussing with other students specifically about these problems.

(vii) Before you ask questions specifically about these problems, please read the statements
of the problems (and especially hints) very carefully. Again, there are no trick questions and
no new concepts involved here. So, many of your questions might be answered if you think
more about them!

(viii) If you still have questions or clarifications, I prefer that you try to ask them during
lecture (for quick ones) or (for more detailed ones) during special office hours on Thursday,
December 9 and Monday, December 13 (both 2-3 pm. and in Rm. 4102) – that way all
students can be informed about these issues.

(ix) If you are unable to have all your questions answered during these times, then you can
send me email or come to my office, Rm. 4119 (it will be better if you send me an email
first to set up a time).

(x) Please write clearly and show all steps in calculations.

(xi) Please try to use the notation (for angles, masses, momenta of particles etc.) – even if
it is for intermediate steps – which is specified in the statement of the problems.

(xii) You are allowed to use mathematica (or look up tables) for doing integrals, although
you should be able to do it “by hand”.
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1 Scalar-scalar scattering in QED

Consider scalar QED, i.e.,

L = (Dµφ)† (Dµφ) −m2
φφ

†φ− 1

4
FµνF

µν , (1)

where

Dµ = ∂µ − ieAµ (2)

and φ is a complex scalar field (with electric charge −1).

Determine the Feynman amplitude (no need to calculate the cross-section) for the process:

φ− (p1) + φ− (p2) → φ− (p′1) + φ− (p′2) (3)

where φ∓ here denote spin-0 particle of electric charge ∓1.

Simply use the Feynman Rules for scalar QED given in notes.

Use ξ = 1, i.e., ’t Hooft-Feynman gauge for photon propagator.

Write your answer in terms of various p’s, coupling constants etc. (no need to go to center-
of-mass frame etc.)

(Hint: is there only one Feynman diagram? If not, then is there a relative sign between the
Feynman amplitudes for the various diagrams? The result of homework problem 7.4 might
be useful for this purpose.)

2 Forward-Backward Asymmetry

In the center-of-mass reference frame, the forward-backward asymmetry (denoted by AFB)
for the process

e+ + e− → µ+ + µ− (4)

(and in general, for any 2 → 2 process) is defined as:

AFB =
σ (0 < θ < π/2) − σ (π/2 < θ < π)

σ (0 < θ < π/2) + σ (π/2 < θ < π)
, (5)

where θ is angle between incoming e− and outgoing µ− directions so that σ (0 < θ < π/2) ≡
∫ θ=π/2

θ=0
dσ is the cross-section for production of a muon in “forward” direction and so on.

(i) Neglecting me,µ compared to the center-of-mass energy, calculate AFB in QED.

(ii) Neglecting me,µ compared to the center-of-mass energy, calculate AFB for a theory
with the following interaction only (which is a generalization of QED to the case of a new
massive vector boson), i.e., do not add QED interaction here:

Hint =

∫

d3x
[

ψ(e)γ
µ
(

g
(e)
V + g

(e)
A γ5

)

ψ(e) + ψ(µ)γ
µ
(

g
(µ)
V + g

(µ)
A γ5

)

ψ(µ)

]

Zµ

=

∫

d3x
[

ψ(e)γ
µ
(

g
(e)
L L+ g

(e)
R R

)

ψ(e) + ψ(µ)γ
µ
(

g
(µ)
L L+ g

(µ)
R R

)

ψ(µ)

]

Zµ (6)
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where the field whose quanta are the massive gauge bosons is denoted by Zµ and L, R =
(1 ∓ γ5) /2 as usual so that gV , gA denote couplings to vector and axial-vector fermionic cur-
rents, respectively. Equivalently, gL, gR denote couplings to left and right-handed fermionic
currents, respectively, i.e., gV,A = (gR ± gL) /2. Note that these couplings can in general be

different for e− and µ−, i.e., g
(e)
V 6= g

(µ)
V for example.

All couplings here are real and the interaction does not couple an electron to a muon (just
like in QED).

You should be able to “guess” most of the Feymnan rules for this theory by simply general-
izing the ones for QED, with the exception of the Z boson propagator which can be assumed
to be −igµν/ (q2 −m2

Z + iε) (where q is the momentum flowing through the Z boson line).

Hint: Based on your above calculation of AFB for QED, it should be clear that the angular
dependence of Feynman amplitude/cross-section is of most relevance for AFB (i.e., factors
such as π’s from phase space are not important since AFB is a ratio of cross-sections.)

Hint: Instead of using “brute force” for this case, try to break-up the total cross-section
into helicity (= chirality, since me, µ is being neglected here) amplitudes, just like you did for
QED in homework problem 10.1. You should be able to simply generalize the helicity/chirality
amplitudes from QED for this case.

(iii) If you set ge, µ
V = e and ge, µ

A = 0, then does your result reduce to what you calculated
in (i) above for QED?

(Such asymmetries provide a crucial test of the Standard Model.)

3 e+e− annihilation into µ+µ− in Yukawa theory

Consider both electrons and muons coupled to a (real) scalar (Yukawa theory):

L = ψ(e) (iγµ∂µ −me)ψ(e) + ψ(µ) (iγµ∂µ −mµ)ψ(µ) +

1

2
(∂µφ) (∂µφ) − 1

2
m2

φφ
2 +

φ
(

heψ(e)ψ(e) + hµψ(µ)ψ(µ)

)

(7)

(i) In the center-of-mass frame, calculate the total cross-section (unpolarized) for the process

e+ + e− → µ+ + µ− (8)

Neglect the electron mass, but not the muon mass relative to the (total) center-of-mass
energy,

√
s.

Write the final result in terms of
√
s, mµ and mφ.

(Hint: you might be able to re-use – with caution! – some of the steps from the calculation
of scalar decay into e+e−.)

(ii) Is the µ+µ− pair in s or p-wave?
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Use the following diagnostic for orbital angular momentum of the µ+µ− (i.e., final) state
(similar to the case of decay of scalar into fermion-antifermion): cross-section (σ) scales as
β1 for s-wave and β3 for p-wave, where β is the speed of the µ+ (and µ−).

(iii) Was the above result about orbital angular momentum of µ+µ− expected (based on
parity invariance and angular momentum)?

[Hint: can the expectation of fermion-antifermion being in p-wave for (on-shell) scalar decay
of problem 5.4.2 (i) and (ii) be used here (even though the scalar here is off-shell)?]

4 e+e− annihilation into scalars in QED

Consider the combination of “usual” and scalar QED, i.e.,

L = ψ̄ (iγµDµ −me)ψ + (Dµφ)† (Dµφ) −m2
φφ

†φ− 1

4
FµνF

µν (9)

where Dµ is as in Eq. (2).

(i) In the center-of-mass frame, calculate the differential cross-section (unpolarized) for the
process

e+ + e− → φ− + φ+ (10)

Just like in problem 1, φ in Eq. (9) denotes a complex scalar field, whereas φ∓ in Eq. (10)
denotes spin-0 particles of electric charge ∓1.

Neglect the electron mass, but not the scalar mass relative to the total center-of-mass energy,√
s.

Write the final result in terms of
√
s, θ (angle between the φ− and e−) and mφ.

Just like in problem 1, simply use the Feynman Rules for scalar QED given in notes and use
ξ = 1, i.e., ’t Hooft-Feynman gauge for photon propagator.

(Hint: be careful with signs of 4-momenta appearing in the scalar-photon vertex factor. As
shown in notes on scalar QED, it is the sum of 4-momenta in the two scalar lines, but both
being along the direction of negative charge flow, which is assigned to this vertex.)

(ii) Does the cross-section vanish when the φ− is emitted either in the forward or backward
direction (i.e., θ = 0 or π)?

(iii) Was this result expected based on angular momentum conservation (for the component
along the direction of the incoming particles)?

[Hint: it might be useful to “break down” the cross-section in terms of the helicity (=
chirality) amplitudes, as was done in homework problem 10.1.]

(iv) Can we add a Yukawa-type interaction, i.e., between the electron and the scalar, in this
theory?
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