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CHAPTER 1

CLASSICAL FIELDS

1-1. PARTICLES AND FIELDS

Nonrelativistic quantum mechanics, developed in the years from 1923 to 1926,
provides a unified and logically consistent picture of numerous phenomena in the
atomic and molecular domain. Following P.A.M. Dirac, we might be tempted
to assert: “The underlying physical laws necessary for the mathematical theory
of a large part of physics and the whole of chemistry are completely known.”

There are, however, basically two reasons for believing that the description
of physical phenomena based on nonrelativistic quantum mechanics is incomplete.
First, since nonrelativistic quantum mechanics is formulated in such a way as to
yield the nonrelativistic energy-momentum relation in the classical limit, it is
incapable of accounting for the fine structure of a hydrogen-like atom. (This
problem was treated earlier by A. Sommerfeld, who used a relativistic generaliza-
tion of N. Bohr’s atomic model.} In general, nonrelativistic quantum mechanics
makes no prediction about the dynamical behavior of particles moving at rela-
tivistic velocities. This defect was amended by the relativistic theory of electrons
developed by Dirac in 1928, which will be discussed in Chapter 3. Second, and
what is more serious, nonrelativistic quantum mechanics is essentially a single-
particle theory in which the probability density for finding a given particle inte-
grated over all space is unity at all times. Thus it is not constructed to describe
phenomena such as nuclear beta decay in which an electron and an antineutrino
are created as the neutron becomes a proton or to describe even a simpler process
in which an excited atom returns to its ground state by “spontaneously” emitting
a single photon in the absence of any external field. Indeed, it is no accident that
many of the most creative theoretical physicists in the past forty years have spent
their main efforts on attempts to understand physical phenomena in which various
particles are created or annihilated. The major part of this book is devoted to the
progress physicists have made along these lines since the historic 1927 paper of
Dirac entitled “The Quantum Theory of the Emission and Absorption of
Radiation” opened up a new subject called the quantum theory of fields.

The concept of a field was originally introduced in classical physics to account
for the interaction between two bodies separated by a finite distance. In classical
physics the electric field E(x. ). for instance, is a three-component function defined
at each space-time point, and the interaction between two charged bodies, 1 and
2, is to be viewed as the interaction of body 2 with the electric field created by
body 1. In the quantum theory, however, the field concept acquires a new dimen-
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sion. As originally formulated in the late 1920's and the early 1930°s, the basic
idea of quantum field theory is that we associate particles with fields such as the
electromagnetic field. To put it more precisely, quantum-mechanical excitations
of a field appear as particles of definite mass and spin, a notion we shall illustrate
in Section 2-2, where the connection between the transverse electromagnetic field
and photons is discussed in detail.

Even before the advent of postwar calculational techniques which enabled us
to compute quantities such as the 2s-2p, , separation of the hydrogen atom to
an accuracy of one part in 10%, there had been a number of brilliant successes
of the quantum theory of fields. First, as we shall discuss in Chapter 2, the quantum
theory of radiation developed by Dirac and others provides quantitative under-
standings of a wide class of phenomena in which real photons are emitted or
absorbed. Second, the requirements imposed by quantum field theory. when
combined with other general principles such as Lorentz invariance and the
probabilistic interpretation of state vectors, severely restrict the class of particles
that are permitted to exist in nature. In particular, we may cite the following two
rules derivable from refativistic quantum field theory:

a) Forevery charged particle there must exist an antiparticle with opposite charge
and with the same mass and lifetime.

b) The particles that occur in nature.must obey the spin-statistics theorem (first
proved by W. Pauli in 1940) which states that half-integer spin particles
(e.g., electron, proton, A-hyperon) must obey Fermi-Dirac statistics, whereas
integer spin particles (e.g., photon, x-meson, K-meson) must obey Bose-
Einstein statistics.

Empirically there is no known exception to these rules. Third, the existence of
a nonelectromagnetic interaction between two nucleons at short but finite distances
prompts us to infer that a field is responsible for nuclear forces; this, in turn,
implies the existence of massive particles associated with the field, a point first
emphasized by H. Yukawa in 1935. As is well known, the desired particles, now
known as z-mesons or pions, were found experimentally twelve years after the
theoretical prediction of their existence.

These considerations appear to indicate that the idea of associating particles
with fields and, conversely, fields with particles is not entirely wrong. There are,
however, difficulties with the present form of quantum field theory which must
be overcome in the future. First, as we shall show in the last section of Chapter
4, despite the striking success of postwar quantum electrodynamics in calculating
various observable effects, the “unobservable™ modifications in the mass and charge
of the electron due to the emission and reabsorption of a virtual photon turn out
to diverge logarithmically with the frequency of the virtual photon. Second, the
idea of associating a field with each *“particle” observed in nature becomes ridic-
ulous and distasteful when we consider the realm of strong interactions where
many different kinds of “particles™ are known to interact with one another: we
know from experiment that nearly 100 “particles” or “resonances” participate
in the physics of strong interactions. This difficulty became particularly acute
in 1961-1964 when a successful classification scheme of strongly interacting
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particles was formulated which groups together into a single “family* highly un-
stable “particles” (lifetimes 10-** sec, often called strong interaction resonances)
and moderately metastable particles (lifetimes 10-'° sec).} Yet, despite these difficul-
ties, it is almost certain that there are many elements in present-day quantum
field theory which are likely to survive, say, one hundred years from now.

Before we study quantized fields, we will study classical fields. In part this deci-
sion is motivated by the historical fact that prior to the development of quantum
electrodynamics there was the classical electrodynamics of Maxwell which, among
other things, successfully predicted the existence of Hertzian electromagnetic
waves. This chapter is primarily concerned with the elements of classical field
theory needed for the understanding of quantized fields. As a preliminary to the
study of quantization we are particularly interested in the dynamical properties
of classical fields. For this reason we will follow an approach analogous to Hamil-
ton’s formulation of Lagrangian mechanics.

1-2. DISCRETE AND CONTINUOUS MECHANICAL SYSTEMS

The dynamical behavior of a single particle, or more precisely, a mass point in
classical mechanics, can be inferred from Lagrange’s equation of motion

d (aL\ oL _
a6 - =0 @b
which is derivable from Hamilton’s variational principle
s
mbk?é&up (1.2)

The Lagrangian L (assumed here not to depend explicitly on time) is given by the
difference of the Kinetic energy T and the potential energy V,

L=T-v, (1.3)

and the variation in (1.2) is to be taken over an arbitrary path q?) such that &q,
vanishes at ¢, and ¢,. The Hamiltonian of the system is

H=7% pgi—L. (1.9
where the momentum p,, canonical conjugate to g,, is given by

_oL
= m|aﬂ (1.5)

1In fact the one-to-one correspondence between a “field” and a “particle* appears to be
lost in a more modern formulation of the field theory of strong interactions as many (if
not all) of the so-called “elementary” particles may well be regarded as bound (or
resonant) states of each other. The distinction between fundamental particles and com-
posite states, however, is much more clear-cut in the realm of the electromagnetic inter-
actions among electrons, muons, and photons. As an example, in Section 4-4 we shall
calculate the lifetime of the ground state of positronium without introducing a field
corresponding to the positronium.
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These considerations can be generalized to a system with many particles. As
a concrete example, let us consider a collection of N particles connected with
identical springs of force constant k and aligned in one dimension, as shown in
Fig. 1-1.1 By calling 7, the displacement of the ith particle from its equilibrium
position we write the Lagrangian L as follows:

L= w.u [mit — k(e — 707 ll\d\d\ddz\d&&dl{

e

s 1[m_, Dier = w.vu
M.U a3 _Hn KE \SA a u_ Fig. 1-1. Particles connected with identical
» springs.

=$a2, (1.6)

where a is the separation distance between the equilibrium positions of two neigh-
boring particles and .#; is the linear Lagrangian density, i.e. the Lagrangian den-
sity per unit length.

We can pass from the above discrete mechanical system to a continuous
mechanical system as the number of degrees of freedom becomes infinite in such
a way that the separation distance becomes infinitesimal:

a—dx, $ — p = linear mass density,
1.7
F_nlb - Ww. ka — Y = Young’s modulus. o
We now have
L= [ dx, (1.8)
where
2 = s~ (@] a9

We note that 7 itself has become a function of the continuous parameters x and 1.
Yet in the Lagrangian formalism 7 should be treated like a generalized “coor-
dinate” just as g in L of Eq. (1.2).
In formulating the variational principle in the continuous case we consider
Ly {y
8 ..h&u&:m;%.%?;,wmv. (1.10)
The variation on 7 is assumed to vanish at ¢, and ¢, and also at the extremities
of the space integration. (In field theory this latter requirement is not stated ex-
plicitly since we are usually considering a field which goes to zero sufficiently
rapidly at infinity.) Otherwise the nature of the variation is completely arbitrary.
The variational integral becomes

m._‘ Ldt H._.&amx_mml.wg +%&ﬁw@ +2mhmw.wdm@3v

= [t [ax *%3 - WA%&VQQ - %&%oi. (L11)

1This problem is treated in greater detail in Goldstein (1951), Chapter 11.
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where the integrations by parts of the last two terms can be justified since &7 vanishes

at the end points of the space and time intervals. If (1.11) is to vanish for any

arbitrary variation satisfying the above requirements, we must have
2 22 2 2% 3% _,
axd(dnfox) © ot d@qfor)  on )

This is called the Euler-Lagrange equation.} In our particular example (1.9),
Eq. (1.12) becomes

(1.12)

}4 } 4
wmlrwmuc. (1.13)

This is to be identified with the wave equation for the one-dimensional propaga-
tion of a disturbance with velocity / Y/u. We can define the Hamiltonian density
S in analogy with (1.4) as

Y
=322
7 msv
4
=yuit +4Y(ZL)5 (1.14)

3% a7 is called the canonical momentum conjugate to 7, and is often denoted
by x. The two terms in (1.14) can be identified respectively with the kinetic and
potential energy densities.

1-3. CLASSICAL SCALAR FIELDS

Covariant notation. The arguments of the preceding section can readily be gen-
eralized to three space dimensions. Consider a field which is assumed to be a real
function defined at each space-time point, X, t; & now depends on ¢, 3¢/oxk
(k = 1, 2, 3), and 3¢/at. The Euler-Lagrange equation reads

5.0 3% L 0 3% oL _
Z 9x,0(0pjoxy) * ot a@Plar) 0P 0. (1.15)
We wish to write (1.15) in a relativistically covariant form, but first let us recall
some properties of Lorentz transformations. We introduce a four-vector notation
in which the four-vector b, with p = 1, 2, 3, 4 stands for
b, = (by, by, by, by) = (b, iby), (1.16)

where b,, b,, and b, are real, and b, = ib, is purely imaginary. In general, the
Greek indices g, v, A, etc., run from 1 to 4, whereas the italic indices i, j, k, etc.,

$In the literature this equation is sometimes writen in the form

2 ¥ 8

i onon B

where 5.2/57 is called the functional derivative of & with respect to 7. This version is not
recommended since (a) it obscures the dependence of £ on the space coordinate, and
(b) it singles out time, which is against the spirit of the covariant approach (to be discussed
in the next section).
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run from 1 to 3. The coordinate vector X, is given by
k.t = Ak._- k.nv .Xu. .N-v
= (x, ict). (.17)

The symbols x, y, and z may also be used in place of x,, x,, and x,. Under a Lorentz
transformation, we have

'

Xy == Quy Xy, A~.~wv
where the a,, satisfy
QG =8, (@ Dy =a,,. 1.19)
Hence
Xy = Ahl_v..ekn = Q.:-Nu A—.NOV

when x’ and x are related by (1.18). The matrix elements a.;, a,, are purely real,

%rnnnmm ay and a,; are purely imaginary. A four-vector, by definition, transforms

in the same way as x, under Lorentz transformations. Because of (1.20) we have
9 _9x, 9 __ 2 .

o, = ax %, e ox .21y
so the four-gradient 9/dx, is a four-vector. The scalar product b-c is defined by
3
bc=b,c, = M.. bye; 4+ b,c,

=b-c— byc,. (1.22)
It is unchanged under Lorentz transformations, since
bed = aub,a,0 = 3,,b,c,
=b.c. (1.23)
A tensor of second rank, t,,, transforms as

Ly = G Guoly,. (1.24)
Generalizations to tensors of higher rank are straightforward. Note that we make
no distinction between a covariant and a contravariant vector, nor do we define
the metric tensor g,,. These complications are absolutely unnecessary in the special

theory of relativity. (It is regrettable that many textbook writers do not emphasize
this elementary point.)

Equation (1.15) can now be written as

nw. ﬁ m.% ; lm.%l o
ox,lo(@dfox,)) 3§ —
It is seen that the field equation derivable from the Lagrangian density & is covari-
ant (i.e., the equation “looks the same” in all Lorentz frames) if the Lagrangian
density & is chosen to be a relativistically scalar density. This is an important
point because the relativistic invariance of % is so restrictive that it can be used
as a guiding principle for “‘deriving™ a covariant wave equation.

Neutral scalar field. As an illustration let ¢(x) be a scalar field which, by definition,
transforms like

(1.25)

P'(x") = $(x), (1.26)
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under a Lorentz transformation, where ¢’ is the functional form of the field in the
primed system. Now the dependence of .# on space-time nooamamnn.m mm. only
through the field and its first derivatives, and x, cannot appear explicitly in &.
This means that 3¢/dx, is the only four-vector at our disposal; when it appears
in & it must be contracted with itself. Moreover, if we are interested in obtaining

" a linear wave equation, % must be a quadratic function of ¢ and 3¢/dx,. A pos-

sible candidate for & consistent with the above requirements is

= —1(0¢ 0 | 14:). 1.27
Z = Nﬁmx..mx_.+13 (1-27)
From the Euler-Lagrange equation (1.25) we obtain
1.0 (2984 y1g— 1.28
me..?mx..v+rﬁ o (1-28)
or
O¢ — p'd =0, (1.29)
where
2
Dnﬂlwmwln.. (1.30)

The wave equation (1.29) is called the Klein-Gordon equation. It was considered
in the middle 1920’s by E. Schrddinger, as well as by O. Klein and W. Gordon,
as a candidate for the relativistic analog of the nonrelativistic Schrédinger wave
equation for a free particle. The similarity of (1.29) to the relativistic energy
momentum relation for a free particle of mass m,

E* —[pfc* = m'c!, (1.31)
becomes apparent as we consider heuristic substitutions:
. d _ind .

E—ihges  pe—r—ihg (1.32)

The parameter x in (1.29) has the dimension of inverse length, and, using (1.32),
we may make the identification

p = mcfh. (1.33)
Numerically 1/ux is 1.41 x 10-** cm for a particle of mass 140 MeV/c® (corre-
sponding to the mass of the charged pion).

Yukawa potential. So far we have been concerned with a field in the absence of any
source. Such a field is often called a free field. The interaction of ¢ with a source
can easily be incorporated into the Lagrangian formalism by adding

L= —Pp, (1.34)

to (1.27), where p is the source density, which is, in general, a function of space-
time coordinates. The field equation now becomes

O — w'd =p. (1.35)




