
Solutions for Take-home Exam for Physics 623, Spring 2010, O.W.

Greenberg

1. (60 points) A system has two degenerate states |l1〉, |l2〉 of energy 0 and a state

|l3〉 of high energy M . The degenerate states are coupled to each other with

coupling a and to the high energy state with couplings b1 and b2, labeled by the

corresponding zero energy state.

(a) Write the Hamiltonian for this system.

H = M ||l3〉〈l3|+a(|l1〉〈l2|+ |l2〉〈l1|)+ b1(|l1〉〈l3|+ |l3〉〈l1|)+ b2(|l2〉〈l3|+ |l3〉〈l2|) (1)

or H = H0 + V ,

H0 =




0 0 0

0 0 0

0 0 M


 (2)

V =




0 a b1

a 0 b2

b1 b2 0


 (3)

in an obvious notation. Can choose a, b1,2 real by absorbing phases in the

definitions of the states.

(b) Use degenerate perturbation theory to find the first-order eigenvalues for this

system.

We must diagonalize the Hamiltonian in the degenerate states. The secular

equation in the degenerate subspace is

∣∣∣∣∣∣
−E a

a −E

∣∣∣∣∣∣
= 0 (4)

The solutions are, for first order eigenvalue a,

|l+〉 =
1√
2


 1

1


 (5)



and for the first order eigenvalue −a,

|l−〉 =
1√
2


 1

−1


 (6)

. The first-order eigenvalues are

〈l+|V |l+〉 = a, 〈l−|V |l−〉 = −a (7)

Use the states |l+〉, |l−〉, |l3〉 as new zeroth basis states.

(c) Transform the Hamiltonian to the new basis,

H =




a 0 (b1 + b2)/
√

2

0 −a (b1 − b2)/
√

2

(b1 + b2)/
√

2 (b1 − b2)/
√

2 M


 (8)

(c) Use degenerate perturbation theory to find the first-order eigenstates for this

system. Hint: the zero energy eigenstates get corrections both in the high-energy

sector and in the degenerate sector.

Rename the basis states above as zeroth-order states, |l(0)
+ 〉, |l(0)

− 〉, |l(0)
3 〉.

|l(1)
+ 〉 =

b2
1 − b2

2

4aM
|l(0)
− 〉 −

b1 + b2√
2M

|l(0)
3 〉, (9)

|l(1)
− 〉 = −b2

1 − b2
2

4aM
|l(0)

+ 〉 − b1 − b2√
2M

|l(0)
3 〉, (10)

|l(1)
3 〉 =

b1 + b2√
2M

|l(0)
+ 〉+

b1 − b2√
2M

|l(0)
− 〉. (11)

(d) Use degenerate perturbation theory to find the second-order eigenvalues for

this system.

In general, ∆(2) = 〈l(0)|V |l(1)〉.

∆
(2)
+ = −(b1 + b2)

2

2M
, (12)

2



∆
(2)
+ =

(b1 − b2)
2

2M
, (13)

∆
(2)
3 = −b2

1 + b2
2

M
. (14)

(e) For the special choice b1 = b2 = b find a relation between a and b that makes

the eigenvalue equation quadratic (and thus easily solvable).

With b1 = b2 = b the secular equation can be solved, but it is easier to solve with

the special choice a = 2b2/M . For that case, the eigenvalues are −a, 0, M + a.

(f) Solve the case of (e) exactly and compare with your results in (b) and (c).

The solutions with the simplified Hamiltonian are, for E = −a,

|l−〉 = |l(0)
− 〉, (15)

for E = 0,

|l+〉 = |l(0)
+ 〉 −

√
2b

M
|l(0)

3 〉, (16)

for E = M + a,

|l3〉 = |l(0)
3 〉+

√
2b

M
|l(0)

+ 〉. (17)

These agree with the results of (b) and (c).

2. (20 points) A spin 1/2 particle with magnetic moment µ is in a constant

magnetic field B0. A time-dependent magnetic field B1exp(−iωt) is turned on for

a time T . The field B1 is in the plane orthogonal to B0. If the magnetic moment is

in its ground state initially, estimate the spin-flip probability at the end of time T .

See handwritten page.

3. (20 points) Use first-order time-dependent perturbation theory to calculate the

probability that an harmonic oscillator in its ground state in the infinite past ends

(a) in its first excited state in the infinite future if it is excited by a

time-dependent force (not potential)

F (t) =
F0τ/ω

τ 2 + t2
. (18)

(b) in its second excited state over the same time interval.
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(c) What is the lowest order of time-dependent perturbation theory for which the

oscillator will end in its nth excited state?

(a) We take the potential to be −xF (t). First-order perturbation theory gives

c(1)
n (t) = (−i/h̄)

∫ t

t0
exp(iωnit

′)Vni(t
′)dt′. (19)

For our case, t0 = −∞, t = ∞, ωni = (En − Ei)/h̄, and Ei = E0 = h̄ω/2,

En = E1 = 3h̄ω/2, so

c
(1)
i (∞) =

iFτ

h̄ω
〈1|x|0〉

∫ ∞

−∞
exp(iωt)

τ 2 + t2
dt (20)

To evaluate the integral, we note that if t → t + iε the exponential factor is

damped for ε > 0, so we complete the contour in the upper half plane and use the

residue at τ = it to find

∫ ∞

−∞
exp(iωt)

τ 2 + t2
dt =

2πi

2iτ
exp(−ωτ). (21)

The matrix element is 〈1|x|0〉 =
√

h̄/2mω. The amplitude becomes

c
(1)
i (∞) =

iπF√
2mh̄ω3

e−ωτ . (22)

The probability is

|c(1)
i (∞)|2 =

(πF )2

2mh̄ω3
e−2ωτ . (23)

(b) The operator x changes the state of the oscillator by 1, so the second excited

state is not reached in 1st order.

(c) The nth excited state is first excited in nth order.
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