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1.a. The stability of a single atom depends on an inequality that shows the

dominance of kinetic energy over the short-distance Coulomb potential. The

Sobolev inequality suffices, but the Heisenberg uncertainty inequality does not.

b. The stability of bulk matter requires the Pauli principle for fermions. Boson

matter would collapse.

c. Thermodynamic limit for bulk matter requires that the long-distance Coulomb

interaction be canceled by having matter be charge neutral.

2. Construct a trial wave function that obeys the Heisenberg-Weyl inequality

Tψ < |x]2 >ψ≥ 9/4, (1)

where Tψ =
∫
[∇ψ(x)]2dx, < |x]2 >ψ=

∫
[x]2[ψ(x)]2dx, subject to

∫
[ψ(x)]2dx = 1,

and yet allows the energy of a single-electron atom to be unbounded below.

Following Lieb in RMP, choose ψ to be concentrated inside a radius R near the

origin with probability 1/2 and in a thin shell at distance L away from the origin

also with probability 1/2. The expectation of the energy is,

〈H〉 = Tψ − Z〈|x|−1〉ψ (2)

(Following Lieb, the x’s are three dimensional vectors.) Note that the Sobolev

inequality depends on the dimension of space, unlike the Heisenberg-Weyl

inequality. We would like to get Tψ very large from the Heisenberg uncertainty

princple inequality so as to prevent the energy getting very negative.

Unfortunately, the Heisenberg uncertainty principle factor goes in the

denominator, so we get

〈H〉 ≥ (9/4)(2/L2)− (Z2/2R) → −∞ (3)

for L large enough and R small enough, even though we used the Heisenberg

uncertainty princple.

3. Use the Sobolev inequality

Tψ ≥ Ks[
∫

[ψ(x)]6dx]1/3 (4)



to find a finite lower bound for the energy of a single-electron atom.

Ks is a positive number whose value is not needed.

Again following Lieb, we want to minimize the expectation value of the

Hamiltonian,

〈H〉 = Tψ − Z
∫
|x|−1ρdx ≡ h(ρ) (5)

subject to
∫

ρdx = 1. We defined ρ = |ψ|2. Put in the constraint as a Lagrange

multiplier by adding λ(
∫

ρdx− 1) to h(ρ).

δ

δρ(x)
[h(ρ) + λ(

∫
ρdx− 1)] = Ks[

∫
ρ3dx]−2/3ρ(x)− Z

|x| + λ = 0 (6)

δ

δλ
=⇒

∫
ρdx = 1 (7)

We find

ρ(x) =

√
Z

Ks

[
∫

ρ3dx]1/3

√
1

|x| −
λ

Z
(8)

Since ρ must be positive or zero, we need 1
|x| − λ

Z
≥ 0, or |x| ≤ Z

λ
≡ R. Then

ρmin =





α
√

1
|x| − 1

R
, |x| ≤ R

0, |x| > R
(9)

where from Eq.(8) α =
√

Z
Ks

[
∫

ρ3dx]1/3. Mathematica gives this as a finite

expression. The value of R follows from
∫

ρdx = 1. Mathematica also gives this as

a finite expression, α = (π2/4)2/3(RZ2/Ks). Inserting ρmin into h(ρ) then gives a

finite lower bound for the energy.
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