(a) The first order correction is via (5.1.37) just <01hx[0> = 0. The second

order correctiou for the energy is (c.f. (5.1.42) and (5.1.43))
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vhere £ = (nti)Ku. MNow <alx|0> = vRTERIN_,, so AE = —b (/K/Zma) 2/ (£ E,) =

-bzlhuz is the energy shift, and the enmergy of the ground state becomes E(o) =
M + AE = o - b/2ma’.

(b) The Schrldinger equation for this problem is
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hdx2+(!§m’x +bx)e = E7,

Let x' = x+blm2, than above eguation can be reduced to
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that is

2 2
-“ "’2 + &nn x* # = (E(o) + bzIZ:mz)t-

This is again a SHO equatiom with E' = E©? + b2/2m02.

E' = k¥, hence E(o) = iy - b2/2m:2 which is exactly the same as the perturba-
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tion result in (a).

From (5.1.44) with k ++ n and A +g, we have
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Using orthonormality of [k(°)> and [n(°)) we have
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Solving the Schrodinger equarionm for the unperturbed system, we can esaily find

the emergy eigenfimctions. They are ¥, = Y2IL/Z]L simex/L sinwy/L = Esin-'-fsinﬂ

for ground state, and tg) - -s:l.::—‘.;:h:rm or '(2) -s:ln—— sin!-z for the first

excited state. So obvicusly the zeroth order eigenfunction for the grownd atate

is just ¥ = %sin'-'-xl-‘-sin% , with the first order emergy shift of <l|ixy|1> =

& %2 AxysinZrx/L sinlry/L dxdy = XL, f.e. AEC® = a12/4. For the firsc

excited state, there is degeneracy and the perturbation in general 1iftfthe de-
generacy. We need to construct the perturbation matrix by evaluating
(1)| H 2 -—-J"'{," xystoZex/L sinl2ey/L dxdy = AL?

«® |v1|1-(2)> -3 gl'g" xysin—si.n———sinz—'!s:lngdxdy - —H-zh
while by symmetry qg)lv |¢(2)> = «vg)lvllig)'-‘ and “g)l"zl.'g)’ = qg)

|v1[¢(2) >. So the perturbation matrix is
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Diagonalizing A with der(4-A1) = O and
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vhere 22 + b2 = 1 (normslization), we get & = 1/vZ, b = 21//7 and
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Bence energy shifts for the first excited state are
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with corresponding zeroth order epergy eigenfuncrions
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(a) State vector for energy eigenstare is characterived by !nx,n’:'. and wave fupe-

tion is given by tnx(x)xp (y) where "n,(‘) and ¢ (¥} are individually wave func-

By ty
tions for one dimensiongl SEO. The energy for the isotropic two dimensional os-
c¢illator is just the mum of the energies for cne dimensiomal oscillators, i.e.

E = iu(nz + % + L. + L4). The three lowest-lying states are (nx.ny) = (0,0},

(1,0}, (0.1) wich energies Kuw, 2ks, 2¥w, respectively, Evidently the first ex-

cited states are doubly degenerace.

(b) The first order emergy shift is clearly zero for the ground state (0,0),
since <0,0{xy|0,0> = 0 because in <O[x|0> (and <0jyjo>) nx(ny) must change by one
unit. For the firsr excited states we use the formalism of degenerate perturba-

tion theory by diagenalizing V = Smsxy. In the (1,0) and (0,1} basis

V= sau? ° nm _%G) ‘1’)
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andhzncebehzvesl.ﬂmux. By same method as groblem 3 abawe, we ger zeroth or-

der eacrgy etgenkecs Ju(|10+|01>) wieh A%) & nike and Lc[20-{015) wirn 4P

= - kllu. So to summarize we have grogynd state [0,0> with energy E = Ku (20

£irst order shift) and first excited stares 3({10-+01>) vith E = (266/2)ks and
5(]105-]01>) with E = (2-6/2)¥ks.
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(c) Now m2(x2452)/2 + Sma’xy = B+ x4)3/2 + Q) (x9)2/2).  Let us rota-
te coordinates by 45°, than X = Cry) V2 , Y 2 (x9)/¥Z. So
H = p2/2m + p2/2a + w2 (146))1X%/2 + alulQ-8)1T212

and is effectively again a two dimensional SHD with @ replaced by /1%8w in the

(X,Y) system. The exict energy for the ground scate is w1+ + Wha'l-d =
Yo + 0(62). There is therefore no change in energy if only terms l:i‘?e.ar in §
are kept. The exact energy for (“x’ny) = (1,0) 1s %/THEQHY + Fuadl—C i =
Yu{2+6/2) + t:)(<$2 s similarly for (nx.ny) = (0,1), by letting & ~ =5, wve have
exact energy Kuw(2-6/2) + 0(62). Ignoring 0(62) contribucions, the results are
the same as in (b).
= I 22 a zlh + ls(l-h:)mzxz. hence
The Eamilronian for the system is H = H_ + semw X Py
2
Vv, = <x|v]o>= Q}%mzxzfm « <k)x2]0>. So our task is to evaluate <k|x”]0»
ko
1‘ -
or xi . Since from (2.3.24) x = M/Zmala + a'r) where a and a' satisfy ajo>
]
1
¢ [n-1> and a’[p = ¢ [o4l>, then x|0> = AT (alo> + 2 |0v) = MATZmo]l> vhile
2 2
12|0> = (fiisz)z(a + ;*)|1> = ¢1|0> + .;212». Sa V= <k[x“Jo> = 380 ¥ S28yar

and -only ¥ and V__ are relevant fo our discussion. Explicit evaluation of 2
oo 20

and c, (remembering that (a*Hi)iD = |2> frow (2.3.21)), ;e bave ¢ = K/ 2m,

2 20 o B @ .
c, = ¥YZ/2ma. Thus Voo = %mzcolx 10> = ¢ cm 12 “5mm 2 chuwf4, and vzo

2 :
= gmquxz[m = czmzﬁ = %%— = ehu/2/7. "“( O&JIL Vho =0,



