
Lecture 9. Momentum Representation, Change Basis, More Ex-

amples, Wednesday, Sept. 21

Work out the momentum operator in the x-representation following the
textbook.

The eigenvalues of p̂ are also continuous and span a one-dimensional real
axis. Eigenstates |p〉 can be chosen as a basis in the Hilbert space,

〈p|p′〉 = λδ(p − p′) ,
∫ dp

λ
|p〉〈p| = 1 , (85)

where λ can be chosen as anything. It is 1 in JJS; I usually choose 2πh̄.
The momentum eigenstates can be expressed in |x〉 basis. The eigen-

equation in x-rep is well-known,

−ih̄
d

dx
〈x|p〉 = p〈x|p〉 (86)

and the solution is
〈x|p〉 = eixp/h̄ . (87)

We note that ∫ ∞

−∞
eikxdx = 2πδ(x) . (88)

Momentum representation: choose |p〉 as a basis, we have the momentum
space wave function

ψ(p) = 〈p|ψ〉 . (89)

It can be shown that the momentum space wave function is related to the
coordinate space wave function by simple Fourier transformation.

The position operator in the momentum representation: x̂ is the generator
of translation in the momentum space,

x̂ = ih̄
d

dp
. (90)

Gaussian wave packet.

〈x|α〉 =
1

π1/4
√

d
exp

(

ikx − x2/2d2
)

(91)
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Plot its probability density. Calculate the expectation value 〈α|x|α〉 = 0
because of the symmetry. On the other hand 〈α|x2|α〉 = d2/2, so one has,
∆x = d/

√
2. Likewise, ∆p = h̄/

√
2d. Therefore, ∆x∆p = h̄/2.

Review harmonic oscillator, one-dimensional square well potential prob-
lems.

Change of Basis: Consider two bases, |i〉 and |j′〉. The two bases are
related by a unitary transformation

|i′〉 = U |i〉 (92)

where U †U = UU † = 1. If we insert
∑

j |j〉〈j| = 1, then we have,

|i′〉 =
∑

j

|j〉〈j|U |i〉 =
∑

j

|j〉Uji (93)

where Uij = 〈i|U |j〉. We can write the above equation in a matrix form,

(|1′〉, |2′〉, ...) = (|1〉, |2〉, ...)







U11 U12 ...
U21 U22 ...
... ... ...





 (94)

where the basis vectors appear as a row matrix.
Suppose a vector |ψ〉 =

∑

i ci|i〉 in the old basis, and we can represent |ψ〉
as a column matrix of ci, or

|ψ〉 = (|1〉, |2〉, ...)







c1

c2

...





 (95)

The same vector can be expressed as |ψ〉 =
∑

i c
′
i|i′〉 in the new basis. Then

it is easy to see that
c′i =

∑

j

U−1

ij cj , (96)

or we can replace the U−1 by U † because of the unitarity.
In some textbooks, the U here is denoted by U−1.

Consider also an operator O =
∑

ij Oij|i〉〈j|, which can be written also as
a matrix form,

O = (|1〉, |2〉, ...)







O11 O12 ...
O21 O22 ...
... ... ...













|1〉
|2〉
...





 , (97)
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From this, it is easy to show that

O′
ij =

∑

kl

U †
ikOklUlj , (98)

or simply O′ = U †OU in the matrix sense.
The trace of an matrix is independent of bases.
Suppose we have a matrix O, and we diagonalize it in the old basis |i〉.

Suppose all eigenvectors are |λn〉. Then in the |λn〉 basis, the matrix is
diagonal with eigenvalue λn. The transformation matrix from the old to the
new basis is |λi〉 = U |i〉. Thus we can write,

O = U †ODU , (99)

where OD is the diagonal matrix, and U is a matrix whose columns are
formed by eigenvectors.

Example of σy.
If two observables are related by unitary transformation A, B = UAU−1,

we say A and B are unitary equivalent observables. It is easy to see that
A and B have exactly the same eigenvalues, and their eigenstates are uni-
tary transformation of each other. Sx and Sy and Sz are unitary equivalent
observables.

Discuss homework problems. Solve new problems, time permits.
Hints: 1.21: Start with the normalized wave function in the square well

potential.

ψn =

√

2

a
sin x

nπ

a
(100)

where n = 1, 2, .... In the x-representation, p = −ih̄d/dx.
1.26: Consider Sx as the old basis. Diagonalize Sx in the old basis.

Express U in the matrix form.
1.29: Consider 1D case, multi-D is easy because [xi, xj] = 0. Show it is

true for a monomial pn. Classical Poisson bracket definition (1.6.48).
1.33: a) Insert

∫

dx|x〉〈x| = 1 and use ixeipx = d(eixp)/dp b) Take the
matrix element of the exponential operator between 〈x| and |p〉, and see what
you get!
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