Lecture 9. Momentum Representation, Change Basis, More Ex-
amples, Wednesday, Sept. 21

Work out the momentum operator in the z-representation following the
textbook.

The eigenvalues of p are also continuous and span a one-dimensional real
axis. Eigenstates |p) can be chosen as a basis in the Hilbert space,

(plp) = Aé(p — 1)
dp
| Sl = 1. (85)
where X\ can be chosen as anything. It is 1 in JJS; I usually choose 27h.

The momentum eigenstates can be expressed in |x) basis. The eigen-
equation in x-rep is well-known,

d
—ih——(x|p) = p{zlp) (86)
and the solution is '
(x|p) = /" . (87)
We note that o
/ e*rdy = 216 (x) . (88)

Momentum representation: choose |p) as a basis, we have the momentum
space wave function

Y(p) = (plY) . (89)

It can be shown that the momentum space wave function is related to the
coordinate space wave function by simple Fourier transformation.

The position operator in the momentum representation: & is the generator
of translation in the momentum space,

d
= zﬁd—p (90)
Gaussian wave packet.
(x]|a) = exp (zkx — x2/2d2) (91)
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Plot its probability density. Calculate the expectation value (a|z|a) = 0
because of the symmetry. On the other hand (a|z?|a) = d?/2, so one has,
Az = d//2. Likewise, Ap = h/+/2d. Therefore, AxAp = h/2.

Review harmonic oscillator, one-dimensional square well potential prob-
lems.

Change of Basis: Consider two bases, |i) and |j’). The two bases are
related by a unitary transformation

@'y = Uli) (92)

where UTU = UUT = 1. If we insert 37, |)(j| = 1, then we have,
i) = 21 GIU) = > 15)Usi (93)
J J

where U;; = (i|U|j). We can write the above equation in a matrix form,

Ull U12 .
(19,120, ) = (11, 12), .0 | Usr U .. (94)

where the basis vectors appear as a row matrix.
Suppose a vector |¢)) = ¥, ¢;|i) in the old basis, and we can represent |))
as a column matrix of ¢;, or

€1
) = (11),12), ) | ¢ (95)
The same vector can be expressed as |¢)) = Y, ¢i|i’') in the new basis. Then
it is easy to see that
¢ = Z Uiglcj , (96)
J

or we can replace the U~! by U because of the unitarity.

In some textbooks, the U here is denoted by U~!.

Consider also an operator O = 3=,; Oy;|i)(j|, which can be written also as
a matrix form,

011 012 |1>
O=(1,12)..)| Ox O .. |12 ], (97)
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From this, it is easy to show that

O} = > ULOuUy | (98)
kl

or simply O’ = UTOU in the matrix sense.

The trace of an matrix is independent of bases.

Suppose we have a matrix O, and we diagonalize it in the old basis |i).
Suppose all eigenvectors are |A,). Then in the |\,) basis, the matrix is
diagonal with eigenvalue \,,. The transformation matrix from the old to the
new basis is |\;) = Uli). Thus we can write,

O=U'0pU , (99)

where Op is the diagonal matrix, and U is a matrix whose columns are
formed by eigenvectors.

Example of o,.

If two observables are related by unitary transformation A, B = UAU !,
we say A and B are unitary equivalent observables. It is easy to see that
A and B have exactly the same eigenvalues, and their eigenstates are uni-
tary transformation of each other. S; and S, and S, are unitary equivalent
observables.

Discuss homework problems. Solve new problems, time permits.

Hints: 1.21: Start with the normalized wave function in the square well

potential.
2
Wy = Ua Sinx%r (100)

where n = 1,2, .... In the x-representation, p = —ihd/dx.

1.26: Consider S, as the old basis. Diagonalize S, in the old basis.
Express U in the matrix form.

1.29: Consider 1D case, multi-D is easy because [z;, x;] = 0. Show it is
true for a monomial p". Classical Poisson bracket definition (1.6.48).

1.33: a) Insert [dz|r)(x| = 1 and use ize®” = d(e**?)/dp b) Take the
matrix element of the exponential operator between (x| and |p), and see what
you get!
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