Homework 11: Due November 24

1.

Consider the operator $\hat{\Theta} = \hat{J}_x^2 + \hat{J}_y^2 - 2\hat{J}_z^2$.

- a. Show that $\hat{\Theta}$ can be written as the q=0 component of a rank two spherical tensor, *i.e.* $\hat{\Theta} = \hat{T}_0^2$. Find the general vector \hat{T}_q^2
- b. Explicitly calculate the matrix element $\langle jm'|\hat{\Theta}|jm\rangle$ using general properties of angular momentum
- c. Use the Wigner-Eckart theorem to show that $\frac{\left\langle jm_{1}\left|\hat{\Theta}\right|jm_{1}\right\rangle}{\left\langle jm_{2}\left|\hat{\Theta}\right|jm_{2}\right\rangle} = \frac{\left\langle j\ 2\ m_{1}\ 0\ \middle|\ jm_{1}\right\rangle}{\left\langle j\ 2\ m_{2}\ 0\ \middle|\ jm_{2}\right\rangle}$
- d. Verify that formulae in c. satisfy the ratio's in b. for the case if j=2 and all m. It is sufficient to check the ratio of m=2 to m=1; m=1 to m=0; m=0 to m=-1; m=-1 to m=-2.

2.

The states of the three dimensional isotropic harmonic oscillator is often labeled by the Cartesian labels $|n_x n_y n_z\rangle$ these states are highly degenerate. It is possible to take linear combinations of these to obtain states with good l and m: $|nlm\rangle$. The purpose of this problem is to use tensorial properties to construct some of these $|nlm\rangle$ in terms of the $|n_x n_y n_z\rangle$ basis. We will work using creation operators for the three Cartesian directions

- a. Show explicitly that \hat{V}_{μ}^{1} where $\hat{V}_{0}^{1} = \hat{a}_{z}^{+}$ and $\hat{V}_{\pm 1}^{1} = \mp \frac{\left(\hat{a}_{x}^{+} \pm i\hat{a}_{y}^{+}\right)}{\sqrt{2}}$ is a rank one tensor by verifying it has the correct commutation rules with $\hat{\vec{L}}$.
- b. Explicitly construct the tensor operators $\hat{S} = \sum_{\mu'} \langle 11\mu'(-\mu')|00\rangle \hat{V}_{\mu'}^1 \hat{V}_{-\mu'}^1$ $\hat{T}_2^2 = \sum_{\mu'} \langle 11\mu'(2-\mu')|22\rangle \hat{V}_{\mu'}^1 \hat{V}_{2-\mu'}^1$ $\hat{T}_1^2 = \sum_{\mu'} \langle 11\mu'(1-\mu')|21\rangle \hat{V}_{\mu'}^1 \hat{V}_{1-\mu'}^1$ $\hat{T}_0^2 = \sum_{\mu'} \langle 11\mu'(-\mu')|20\rangle \hat{V}_{\mu'}^1 \hat{V}_{-\mu'}^1$ in terms of $\hat{a}_x^+, \hat{a}_y^+, \hat{a}_z^+$. By construction these are sphereical tensors.
- c. Operate \hat{V}_{μ}^{1} , \hat{S} and \hat{T}_{μ}^{2} on the ground state and exploit the Wigner –Eckart theorem to find the states $|nlm\rangle = |111\rangle, |110\rangle, |11-1\rangle, |200\rangle, |222\rangle, |221\rangle, |220\rangle$ in terms of the states $|n_{x}n_{y}n_{z}\rangle$.
- 3. This problem explores some properties of $\hat{\pi}$, the parity operator
 - a. Show that $\hat{\pi}$ is both unitary and hermitian.
 - b. The fact that $\hat{\pi}$ is unitary allows one to write it as $\hat{\pi} = \exp(i\pi \hat{G}/2)$ where \hat{G} is Hermitian (and π on the righthand side is the number 3.14... and not the operator). Show that $\hat{G} = \hat{\pi} \hat{1}$.
 - c. Construct the operator $\hat{U}(\theta) = \exp(i\hat{G}\theta/2)$; by construction $\hat{U}(\pi) = \hat{\pi}$
 - d. Show that $\hat{U}(\theta)$ is periodic: $\hat{U}(\theta + 2\pi) = \hat{U}(\theta)$

- 4. In class it was stated that $\hat{\pi}$ was a discrete symmetry unobtainable by making a continuous rotation. In problem 3, however you have demonstrated that $\hat{\pi}$ can be obtained continuously from $\hat{U}(\theta)$. This problem explores the action of $\hat{U}(\theta)$
 - a. Find an expression $\hat{\vec{x}}' = \hat{U}^+(\theta)\hat{\vec{x}}\hat{U}(\theta)$; this tell one the effect of the continuous transformation on $\hat{\vec{x}}$.
 - b. Does the result in a. have any analog in classical physics? explain.

Sakurai Chapter 3, 28, 29.