Homework 7: Due October 24

- 1. The current operator we derived in class $\hat{\vec{J}}(\vec{x}) = \frac{\hat{p}\hat{\rho}(\vec{x}) + \hat{\rho}(\vec{x})\hat{p}}{2m}$ was valid for Hamiltonians of the form $\hat{H} = \frac{\hat{p}^2}{2m} + V(\hat{x})$. In this problem I want you to consider the case of a particle in an electro-magnetic field $\hat{H} = \frac{\left(\hat{p} q\vec{A}(\hat{x})\right)^2}{2m} + q\phi(\vec{x})$. Find the appropriate form for $\hat{\vec{J}}(\vec{x})$ for this problem and show that current is conserved in the sense that $\frac{d\hat{\rho}^H(x)}{dt} = -\vec{\nabla} \cdot \hat{\vec{J}}^H(\vec{x})$. Hint: recall that for the classical version of the original problem the velocity is $\frac{\vec{p}}{m}$. What is the classical velocity in the new problem?
- 2. Consider a particle of charge q and mass m moving in a constant magnetic field in of strength B and oriented in the z direction. The purpose of this problem is find the eigenstates of energy for this situation. These turn out to be the famous Landau levels. To proceed we need to pick a gauge. In this problem we will take gauge $\vec{A}(\vec{x}) = -B \hat{x} y$ where \hat{x} is a unit vector in the x direction (and not an operator)
 - a. Show that this vector potential does in fact correspond the situation of interest.
 - b. Show that solutions to the time-independent Schrodinger equation can be written as $\psi(x, y, z) = \exp(i(k_z z + k_x x))\psi_n^{HO}\left(y + \frac{\hbar k_x}{qB}\right)$ where ψ_n^{HO} is the eigenfunction for the nth state of a one dimension harmonic oscillator for a system of mass m and $\omega = \left|\frac{qB}{m}\right|$ with associated energies given by

$$E_{k_{z}k_{x}n} = \frac{\hbar^{2}k_{z}^{2}}{2m} + \hbar\omega(n + \frac{1}{2}).$$

Note that the eigenstates are specified by two continuous parameters k_z , k_x and one discrete parameter n. Note also that the energies are completely independent of k_x and hence all level are infinite degenerate.