
Homework 7: Due October 24 
 

 

1. The current operator we derived in class 
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+= .  In this problem I want you to consider the 

case of a particle in an electro-magnetic field 
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for this problem and show that current is conserved in the 

sense that )(
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.  Hint: recall that for the classical version of the 

original problem the velocity is  
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.  What is the classical velocity in the new problem? 

 

2. Consider a particle of charge q and mass m moving in a constant magnetic field in of 

strength B and oriented in the z direction.  The purpose of this problem is find the 

eigenstates of energy for this situation.  These turn out to be the famous Landau levels.  

To proceed we need to pick a gauge.  In this problem we will take gauge 
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where x̂ is a unit vector in the x direction (and not an operator) 

a. Show that this vector potential does in fact correspond the situation of interest. 

b. Show that solutions to the  time-independent Schrodinger equation can be written 
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eigenfunction for the nth state of a one dimension harmonic oscillator for a 

system of mass m and 
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Note that the eigenstates are specified by two continuous parameters xz kk ,  and 

one discrete parameter n.    Note also that the energies are completely 

independent of xk and hence all level are infinite degenerate. 

 


