
Physics 622 

 

Take home Exam----Due 10:00 A.M. Monday, October 27 
 

This exam is open notes and open book. You may also use Mathematica or other symbolic manipulation 

programs.   If you use Mathematica or a similar program you must include the output to get credit.  Do not 

seek outside help.  (I trust you.)  To get credit you must show how you obtained your answer from the basic 

physical and mathematical principles. You may use formulae that we derived in class or in the book as a 

starting point.  Since you have considerable time on this exam, I fully expect your answers to be clear.     

If you have questions you may e-mail me (cohen@physics.umd.edu) or call me at the office (301) 405-6117 or at 

home (301) 654-7702 (Before 10:00 p.m.)   Before contacting me check the course website.  If a clarification 

of a question is needed I will post the corrected version. 

 

A word of encouragement:  while this exam looks long it should not take an overly long time to complete. Part 

of the length is due to a considerable amount of explanatory information with each problem.  Most of these 

problems are conceptual in nature and do NOT require long and ugly calculations.  A few of the problems are 

very easy.  If you are worried that a particular answer must be wrong because the problem seemed too easy---

relax: it probably was that easy!  The exam is written in such a way that you can often do a later section of a 

problem while missing earlier parts.   

Use units with 1=h  

 

1. This problem concerns a statistical ensemble of spin-1/2 systems.  Such a system is naturally 

characterized by a density operator with the property that the expectation value of any observable A is given by 
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any two-dimensional Hermitian matrix--may be parameterized in the following form: 
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0 +++=   where zyx rrrr ,,,0  are four real constants.  (Any two-dimensional Hermitian  

operator can be put in this form).  Since 1)ˆ( =ρtr  for any density matrix we know that 
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a. Show that the system is in a “pure state” (i.e., one described by a single well-defined quantum state) 

if, and only if,
4
1222 =++ zyx rrr .  Hint: What are the properties of the density matrix of a pure state? 

 

b. There is a constraint on 
222

zyx rrr ++ for a mixed state: namely, 
4
1222 <++ zyx rrr .  Derive this 

constraint. 

 

c. Several 2µ2 matrices are given below.  For each one indicate whether it corresponds to the density 

matrix for a pure state,  corresponds to the density matrix of a mixed state, or does not correspond to any 

density matrix: 
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2. In homework 4 you showed---or should have shown---that the causal time evolution operator for a one-

dimensional system with a time-independent  Hamiltonian given by )ˆ(
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a. One useful result is an integral equation for the causal propagator.    Stating with the integral equation 

for the causal time evolution operator, show that the causal propagator satisfies  
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 Note: you do NOT need to re-derive the expression for the free propagator that we derived in class.                                                            

 

b. Show that the causal propagator can be written as the following series: 
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c. It is sometimes useful to consider the operator )(ˆ EG which is defined as 

( )∫ +≡ tiEitUdtEG c )(exp)0,(ˆ)(ˆ ε  where the limit 0→ε is implicitly taken at the end of any 

calculation.  Starting with the integral equation for ),(ˆ 0ttU
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 show that )(ˆ EG  satisfies the 
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3. In class we showed that in three-dimensional quantum mechanics describing the motion of a single 

particle  the probability is conserved locally as an operator equation in the sense that the continuity equation was 



satisfied for Heisenberg operators: )(
ˆ)(ˆ

xJ
dt

xd H
H

rr
r

⋅−∇=
ρ
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momentum.   We will focus on a description of a free particle in three dimensions (so  
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where the superscript indicates the Heisenberg picture.   Note that    P
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---the momentum density---is a vector and 

T
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---the momentum current density (also known as the stress-tensor)---is a matrix.  The divergence acting on a 

matrix yielding a vector may not be familiar to you but it is easy to see its meaning on a component-by-
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a. Show that this is a sensible definition for a momentum density in the sense that   pxxd ˆ)(
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c. Show that the expressions for the expectation value of )(
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d. Find an analogous expression for )(xji

r
T  (where the operator is defined in part b. ) 

 

 

4. Consider a particle of mass m and charge q moving in a magnetic field.  The Hamiltonian is given by  
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a. Is the expectation value of v̂
r

 in a state ψ  gauge invariant;  that is, does ''ˆ'ˆ ψψψψ vv
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transformations in the standard way?  Justify your answer mathematically.  Also explain in a 

sentence or two why your answer makes physical sense.    
 



b. Show that in the Heisenberg equation of motion for v̂
r

 in component form is  
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c. Suppose the magnetic field is independent of space and time.  Take it to be oriented in the 

positive z direction and of magnitude 0B .  Show that in this case, the Heisenberg equations of 

motion imply that  )(ˆ)(ˆ)(ˆ)(ˆ)(ˆ)(ˆ)(ˆ tvtztztytytxtx H
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d. The results in part c. clearly imply that y  at time t is the same as y  at time t+τ..  Does it also 

mean that 2y  at time t is the same as 2y  at time t+τ ?  Explain your answer. 

 

5. This problem is a variation on a theme of coherent states.  Coherent states are defined in terms of a 

particular harmonic oscillator basis.  The harmonic oscillator considered here is a conventional one dimension 

harmonic oscillator for a particle of mass, m, and frequency, ω.   We will define the raising and lowering 

operators (
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states are normalized eigenstates of the lowering operator:  zzza =ˆ  with 1=zz  where z is a complex 

number which labels the state.  A coherent state can also be written as  ( ) 0)ˆexp(*exp
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0  is the ground state of the harmonic oscillator.  In homework 5 you proved---or should have proved---the  
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This problem concerns two new classes of states related to coherent states:  
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normalization constants where the subscripts E and O denoted even and odd combinations. 

 

a. Show that both 
E
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b. Find the normalization constants *),( zzEη  and *),( zzOη . 
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d. Show that 
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e. Evaluate the expectation value of x and 
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