Homework 7: Due October 29

Note this assignment is longer than most. This is because it covers two weeks worth of material. Pleasebudget your time accordingly.

1. Consider a charged particle going through a double slit interference experiment where beyond the slit there is a constant magnetic field.

Where the magnetic field is in the blue region, has magnitude B and is directed out of the page, the incident electrons have a momentum of magnitude P and an interference pattern forms on the back plate. You may assume that P is very small compared with the radius of a classical cyclotron orbit of an electron of momentum P in a magnetic field of strength P; P: the classical path of an electron will not curve substantially as transverses a distance P. The maxima on this back plate shift due to the presence of the magnetic field. Show that the amount of this shift is equal to the amount a classical electron of this momentum is shifted upwards due to the Lorentz force as it travels from the slits to the back plate.

- 2. The current operator we derived in class $\hat{\vec{J}}(\vec{x}) = \frac{\hat{\vec{p}}\hat{\rho}(\vec{x}) + \hat{\rho}(\vec{x})\hat{\vec{p}}}{2m}$ was valid for Hamiltonians of the form $\hat{H} = \frac{\hat{\vec{p}}^2}{2m} + V(\hat{\vec{x}})$. In this problem I want you to consider the case of a particle in an electro-magnetic field $\hat{H} = \frac{\left(\hat{\vec{p}} q\vec{A}(\hat{\vec{x}})\right)^2}{2m} + q\phi(\vec{x})$. Find the appropriate form for $\hat{\vec{J}}(\vec{x})$ for this problem and show that current is conserved in the sense that $\frac{d\hat{\rho}^H(x)}{dt} = -\vec{\nabla}\cdot\hat{\vec{J}}^H(\vec{x})$. Hint: recall that for the classical version of the original problem the velocity is $\frac{\vec{p}}{m}$. What is the classical velocity in the new problem?
- 3. Consider a particle of charge q and mass m moving in a constant magnetic field in of strength B and oriented in the z direction. The purpose of this problem is find the

eigenstates of energy for this situation. These turn out to be the famous Landau levels. To proceed we need to pick a gauge. In this problem we will take gauge

 $A(\vec{x}) = -B \hat{x} y$ where \hat{x} is a unit vector in the x direction (and not an operator)

- a. Show that this vector potential does in fact correspond the situation of interest.
- b. Show that solutions to the the time-independent Schrodinger equation can be written as $\psi(x,y,z) = \exp(i(k_zz + k_xx))\psi_n^{HO}\left(y \frac{\hbar k_x}{qB}\right)$ where ψ_n^{HO} is the eigenfunction for the nth state of a one dimension harmonic oscillator for a

system of mass m and $\omega = \left| \frac{qB}{m} \right|$ with associated energies given by

$$E_{k_z k_x n} = \frac{\hbar^2 k_z^2}{2m} + \hbar \omega \left(n + \frac{1}{2} \right).$$

Note that the eigenstates are specified by two continuous parameters k_z , k_x and one discrete parameter n. Note also that the energies are completely independent of k_x and hence all level are infinite degenerate.

4. In a thermal ensemble the probability that a system will be in a particular energy eigenstate, n, is $P_n = \frac{\exp(-\beta E_n)}{Z(\beta)}$ where β and the partition function have the same

meaning as in problem 1. The density matrix operator for given β is then given by

$$\widehat{\rho}_{\beta} = \sum_{n} P_{n} \left| \psi_{n} \right\rangle \left\langle \psi_{n} \right| = \sum_{n} \frac{\exp(-\beta E_{n})}{Z(\beta)} \left| \psi_{n} \right\rangle \left\langle \psi_{n} \right|$$
. Show that the position

representation for the density matrix for system with one degree of freedom is given by

$$\rho_{\beta}(x',x) \equiv \left\langle x' \middle| \hat{\rho}_{\beta} \middle| \middle| x \right\rangle \text{ is given by } \rho_{\beta}(x',x) = \frac{K^{c}(x',-i\beta \, \hbar;x,0)}{\int dx \, K^{c}(x,-i\beta \, \hbar;x,0)} \text{ where as in }$$

problem 1 $K^c(x,-i\beta\hbar;x,0)$ is understood in the sense of an analytic continuation from the real function.

- 5. Equation 3.3.21 in Sakurai gives an explicit matrix expression for a finite rotation specified the three Euler angles α , β , γ for a spin ½ system.
 - a. Use the results in 1. to show that this rotation matrix may be represented as

$$\mathcal{D}(\alpha, \beta, \gamma) = \left(\cos(\beta/2)\cos((\alpha+\gamma)/2)\right)\vec{1} + i\left(\sin(\beta/2)\sin((\alpha-\gamma)/2)\right)\vec{\sigma}_x - \sin(\beta/2)\cos((\alpha-\gamma)/2)\vec{\sigma}_y - \cos(\beta/2)\sin((\alpha+\gamma)/2)\vec{\sigma}_z$$

b. Instead of the three Euler angles one can parameterize a general rotation as the rotation about a fixed axis \hat{n} through a fixed angle, θ .

Use the result in a. to show that

$$\hat{n} = -\frac{\left(\sin(\beta/2)\sin(\alpha-\gamma)/2\right)\hat{x} - \sin(\beta/2)\cos(\alpha-\gamma)/2\hat{y} - \cos(\beta/2)\sin(\alpha+\gamma)/2\hat{z}_z}{\sin(\beta/2)}$$

where the hat on n,x,y, and z indicates that they are unit vectors (as opposed to operators.

6. In class we showed that the density matrix for a spin ½ system depended on three real parameters and was thus fully determined by the expectation values of the three components of spin: $\langle \langle s_x \rangle \rangle$, $\langle \langle s_y \rangle \rangle$, $\langle \langle s_z \rangle \rangle$. How many parameters does it take to fully specify the density matrix for a spin 1 system?

Sakurai----3.2, 3.4, 3.8