
Homework 7: Due October 29 
 

 
Note this assignment is longer than most.  This is because it covers two weeks worth of 
material.  Pleasebudget your time accordingly. 

 
1. Consider a charged particle going through a double slit interference experiment where 

beyond the slit there is a constant magnetic field. 
 

 
Where the magnetic field is in the blue region, has magnitude B and is directed out of the 
page, the incident electrons have a momentum of magnitude p and an interference pattern 
forms on the back plate.   You may assume that L  is  very small compared with the 
radius of a classical cyclotron orbit of an electron of momentum p in a magnetic field of 
strength B; i.e. the classical path of an electron will not curve substantially as transverses 
a distance L.  The maxima on this back plate shift due to the presence of the magnetic 
field.  Show that the amount of this shift is equal to the amount a classical electron of this 
momentum is shifted upwards due to the Lorentz force as it travels from the slits to the 
back plate. 
 

2. The current operator we derived in class 
m

pxxpxJ
2

ˆ)(ˆ)(ˆˆ
)(ˆ

rrrr
rr ρρ +

= was valid for 

Hamiltonians of the form )ˆ(
2

ˆ
ˆ

2

xV
m

pH r
r

+= .  In this problem I want you to consider the 

case of a particle in an electro-magnetic field 
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3. Consider a particle of charge q and mass m moving in a constant magnetic field in of 

strength B and oriented in the z direction.  The purpose of this problem is find the 
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eigenstates of energy for this situation.  These turn out to be the famous Landau levels.  
To proceed we need to pick a gauge.  In this problem we will take gauge 
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where x̂ is a unit vector in the x direction (and not an operator) 
a. Show that this vector potential does in fact correspond the situation of interest. 
b. Show that solutions to the  the time-independent Schrodinger equation can be 
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Note that the eigenstates are specified by two continuous parameters xz kk ,  and 
one discrete parameter n.    Note also that the energies are completely 
independent of xk and hence all level are infinite degenerate. 
 

4. In a thermal  ensemble the probability that a system will be in a particular energy 

eigenstate, n,  is 
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meaning as in problem 1.  The density matrix operator for given β  is then given by 
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representation for the density matrix  for system with one degree of freedom is given by 
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problem 1 )0,;,( xixK c hβ− is understood in the sense of an analytic continuation from 
the real function.   

 
5. Equation 3.3.21 in Sakurai gives an explicit matrix expression for a finite rotation specified the 

three Euler angles α, β , γ for a spin ½ system.  
a.  Use the results in 1. to show that this rotation matrix may be represented as   
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b. Instead of the three Euler angles one can parameterize a general rotation as the 
rotation about a fixed axis n̂  through a fixed angle, θ .  

Use the result in a. to show that  
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where the hat on n,x, y, and z indicates that they are unit vectors (as opposed to operators. 
 

6. In class we showed that the density matrix for a spin ½ system depended on three real 
parameters and was thus fully determined by the expectation values of the three 
components of spin: zyx sss ,, .  How many parameters does it take to fully 

specify the density matrix for a spin 1 system? 
 

Sakurai----3.2, 3.4,  3.8 
 
 


