Homework 10: Due November 19

1. Clebsch-Gordan coefficients can be expressed in the form $\langle j_1 j_2 m_1 m_2 | jm \rangle$. Here I want you to compute from first principles all nonvanishing Clebsch-Gordan coefficients obtained from combining to angular momenta with j=1. That is you should calculate

Do this by noting that the state $|22\rangle = |1111\rangle$ and using the lowering operator and orthogonality. Alternatively you may use the recursion relation in the book. Compare your results with a C-G table.

- 2. Consider two Cartesian vectors \vec{A} and \vec{B} . There are several ways to take products of the two to produce Cartesian tensors of various ranks: one can produce a scalar, namely the dot product $\vec{A} \cdot \vec{B}$ the cross product $\vec{A} \times \vec{B}$ and traceless symmetric tensor \vec{C} whose components are given by $C_{ij} = \frac{1}{2}(A_iB_j + A_jB_i) \frac{1}{3}\delta_{ij}\vec{A} \cdot \vec{B}$. Note that the components of these three structures are linearly independent: there are nine possible combination of A_iB_j and there is one dot product, three components of the cross product and 5 independent components of C (once the fact that it is traceless and symmetric is included). This same information can be expressed in terms of three spherical tensor: an l=0, and l=1 and l=2. Derive the forms for these in terms of the Cartesian components A_i, B_j from first principles. In effect this is like deriving 3.10.16 but for a more general case Express Do not start from 3.10.16
- 3. Consider the operator $\hat{\Theta} = \hat{J}_{v}^{2} + \hat{J}_{v}^{2} 2\hat{J}_{z}^{2}$.
 - a. Show that $\hat{\Theta}$ can be written as the q=0 component of a rank two spherical tensor, *i.e.* $\hat{\Theta} = \hat{T}_0^2$. Find the general vector \hat{T}_q^2
 - b. Explicitly calculate the matrix element $\langle jm'|\hat{\Theta}|jm\rangle$ using general properties of angular momentum
 - c. Use the Wigner-Eckart theorem to show that $\frac{\left\langle jm_{1}\left|\hat{\Theta}\right|jm_{1}\right\rangle}{\left\langle jm_{2}\left|\hat{\Theta}\right|jm_{2}\right\rangle} = \frac{\left\langle j\ 2\ m_{1}\ 0\ \middle|jm_{1}\right\rangle}{\left\langle j\ 2\ m_{2}\ 0\ \middle|jm_{2}\right\rangle}$
 - d. Verify that formulae in c. satisfy the ratio's in b. for the case if j=2 and all m. It is sufficient to check the ratio of m=2 to m=1; m=1 to m=0; m=0 to m=-1; m=-1 to m=-2.

4.

The states of the three dimensional isotropic harmonic oscillator is often labeled by the Cartesian labels $|n_x n_y n_z\rangle$ these states are highly degenerate. It is possible to take linear combinations of these to obtain states with good l and m: $|nlm\rangle$. The purpose of this problem is to use tensorial properties to construct some of these $|nlm\rangle$ in terms of the $|n_x n_y n_z\rangle$ basis. We will work using creation operators for the three Cartesian directions

- a. Show explicitly that \hat{V}_{μ}^{1} where $\hat{V}_{0}^{1} = \hat{a}_{z}^{+}$ and $\hat{V}_{\pm 1}^{1} = \mp \frac{\left(\hat{a}_{x}^{+} \pm i\hat{a}_{y}^{+}\right)}{\sqrt{2}}$ is a rank one tensor by verifying it has the correct commutation rules with $\hat{\vec{L}}$.
- b. Explicitly construct the tensor operators $\hat{S} = \sum_{\mu'} \langle 11 \mu' \mu' | 00 \rangle \hat{V}_{\mu'}^1 \hat{V}_{-\mu'}^1$, $\hat{T}_2^2 = \sum_{\mu'} \langle 11 \mu' (\mu \mu') | 22 \rangle \hat{V}_{\mu'}^1 \hat{V}_{-\mu'}^1$, $\hat{T}_1^2 = \sum_{\mu'} \langle 11 \mu' (\mu \mu') | 21 \rangle \hat{V}_{\mu'}^1 \hat{V}_{-\mu'}^1$ and $\hat{T}_0^2 = \sum_{\mu'} \langle 11 \mu' (\mu \mu') | 20 \rangle \hat{V}_{\mu'}^1 \hat{V}_{-\mu'}^1$ in terms of $\hat{a}_x^+, \hat{a}_y^+, \hat{a}_z^+$. By construction these are sphereical tensors.
- c. Operate \hat{V}_{μ}^{1} , \hat{S} and \hat{T}_{μ}^{2} on the ground state and exploit the Wigner –Eckart theorem to find the states $|nlm\rangle = |111\rangle, |110\rangle, |11-1\rangle, |200\rangle, |222\rangle, |221\rangle, |220\rangle$ in terms of the states $|n_{x}n_{y}n_{z}\rangle$.