1. Consider a spin ½ particle in a magnetic field whose magnitude is constant but whose
direction rotates in the x-y plane with angular frequency Ω. The Hamiltonian for such a
system can be written as $\hat{H} = -\omega (\hat{s}_x \cos(\Omega t) + \hat{s}_y \sin(\Omega t))$ where ω is a constant
which depends on the magnetic field and the gyromagnetic ratio. The purpose of this
problem is to find the time-evolution operator satisfying $\hat{H} \hat{U} = i \hbar \frac{d\hat{U}}{dt}$ with
$\hat{U}(0) = \hat{1}$.

a. As a first step show that $\hat{W} = \hat{W}^+(\omega \hat{s}_x)\hat{W}$ where \hat{W} is a time dependent
unitary transformation given by $\hat{W} = \exp(i \hat{\sigma}_z \Omega t / 2)$. A couple of identities
you might want to prove first in deriving this are:
 i. $\{\hat{\sigma}_x, \hat{\sigma}_z\} = 0$ (anti-commutator0
 ii. $\{\hat{\sigma}_z, \hat{\sigma}_x\} = 2i \hat{\sigma}_y$
 iii. $\hat{\sigma}_z^2 = \hat{1}$

b. Show that $\hat{U}(t)$ can be written as $\hat{U}(t) = \hat{W}^+(t)\hat{V}(t)$ where $\hat{V}(t)$ satisfies an
effective time-evolution equation: $-(\omega \hat{s}_x + \Omega \hat{s}_z)\hat{V} = i \hbar \frac{d\hat{V}}{dt}$.

c. Show that $\hat{V} = \cos\left(\omega' t / 2\right)\hat{1} + i \sin\left(\omega' t / 2\right)\frac{\omega \hat{\sigma}_x + \Omega \hat{\sigma}_z}{\omega'}$ where
 $\omega' = \sqrt{\omega^2 + \Omega^2}$.

d. Use the expressions in b. and c. to find the matrix elements of $\hat{U}(t)$ in the
 $|+\rangle, |-\rangle$ basis.

2. In principle we know that the time evolution operator in problem 1 can be written as
$\hat{U}(t) = T\left(\exp\left(\frac{-i}{\hbar} \int_0^t dt' \hat{H}(t')\right)\right)$. Suppose we wish to approximate this by expanding the
exponential to second order: $\hat{U}(t) \approx \hat{1} + T\left(\frac{-i}{\hbar} \int_0^t dt' \hat{H}(t')\right) + \frac{1}{2} T\left(\frac{-i}{\hbar} \int_0^t dt' \hat{H}(t')\right)^2$.

a. Explain qualitatively why this should correspond to expanding the exact solution
up to second order in a Taylor series in ω.

b. Compute the Taylor series for the exact solution up to second order in ω. You
may find it VERY helpful to do this via Mathematica or other symbolic
manipulation program.

c. Calculate the time ordered products and compare with part b.

Sakurai---2.1, 2.3, 2.5., 2.6