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A. Vectors in Spacetime

We can add time to the three space coordinates and think of physics in spacetime instead. This can be down
whether or not relativity is relevant for the problem at hand. You certainly drew diagrams of position t versus time
in high school, long before hearing about relativity. Those diagrams are a picture of the spacetime! In any case, it
seems natural to extend the concept of vectors and tensors to 4 dimensions and have 4-component vectors, ... . Four-
vectors and four-tensors, are they are called, will be useful only after we make a few modifications in the formalism
for three-vectors and three-tensors we discussed before. The reason is that while the laws of physics are valid for any
coordinate system in space, regardless of its orientation, we don’t expect coordinate systems to be equivalent after a
4-dimensional rotation. Time and space are pretty different after all. There is however, another kind of transformation
involving the 4 dimensions of spacetime that is indeed a symmetry of Nature. To find out what they are, let us look
at the two principles special relativity is based upon

1. The laws of Physics are the same for any inertial observable

2. The speed of light (in vacuum) is the same in any inertial frame

The first principle is reasonable; the second seems crazy as “everybody knows” that objects seem to us to move faster if
we ourselves move in the opposite direction. Why should it be different with light? Yet, it is an unavoidable conclusion
if you are to believe in the validity of Maxwell’s equations in any inertial frame, as Maxwell’s equations predict waves
moving with speed c but not waves moving at any other speed. Many sources discuss the experimental/theoretical
motivations for these postulates and their consequences. Here we will only discuss a formalism (space time 4-tensors)
used to calculate things in relativistic theories like electromagnetism.

The location of an event (something that occurs at a certain point in space and time) is determined by four numbers,
x0 = ct, x1 = x, x2 = y, and x3 = z. We can group this coordinates in a four component object xµ = (x0, x1, x2, x3).
The index µ (as well as other greek indices) take the values µ = 0, 1, 2 or 3, as opposed to the latin indices i, j, k, ..
that run only from 1 to 3. xµ specifies the location of an event in space time just like the usual 3-vector ~x = (x, y, z)
specifies a spatial location. You should think of four vectors the way you think of regular 3-vectors: a line with an
arrow at the end. Except they live on a space with one more dimension. The cartesian components of a 3-vector are
dependent on the reference frame one uses. One can say that its components ”transform” as the coordinate system
is changed.

Now imagine two different events with coordinates xµ and yµ ”connected by a light ray”, that is, such that a light
ray passes through both of them. Since light moves with the speed of light, the spatial distance between them should
equal the time difference times c

(x0 − y0)2︸ ︷︷ ︸
(ct)2

− (x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2︸ ︷︷ ︸
(~x−~y)2

= 0. (1)

If we now observe the same light ray in a different frame the coordinates of each event would be different (x
′µ and

y
′µ) but the fact that they are connected by a light ray is still true. This implies that

(x
′0 − y

′0)2︸ ︷︷ ︸
(ct′)2

− (x
′1 − y

′1)2 + (x2 − y2)2 + (x3 − y3)2︸ ︷︷ ︸
(~x−~y)2

= 0. (2)

It is not true that either the spatial distance between the two events, or the time difference between them is the same
as seen by the two observers. But the combination (c∆t)2 − ∆~x2 is invariant. This is similar to the fact that, in
three-domensional space, the combination

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 (3)

is invariant. So we define the “length” of a vector in spacetime by

|v|2 = (v0)2 − (v1)2 − (v2)2 − (v3)2. (4)
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The only unusual thing about this is that this “length” is not necessarily positive. This flipped sign in the definition
of length will require a few changes when dealing with 4-vectors and 4-tensors and compared to the three dimensional
case.

In three dimensions, the length of a vector |~v|2 = (v1)2 + (v2)2 + (v3)2 is invariant under rotations. What is the
set of transformations that keep eq.(3) invariant? Those are the Lorentz transformations. They include regular 3D
rotations (keeping v0 fixed and mixing the spatial components with an orthogonal matrix) and also boosts like

x
′0

x
′1

x
′2

x
′3


 γ 0 0 −γv/c

0 1 0 0
0 0 1 0

−γv/c 0 0 γ


︸ ︷︷ ︸

L

x
0

x1

x2

x3

 , γ =
1√

1− v2

c2

. (5)

In general, Lorentz transformations are the ones keeping eq.(3) invariant. The coordinate frames related by Lorentz
transformations are not only a mathematical device. Real observers moving at constant speed in relation to each
other would measure space and time in such a way that the coordinates of an event seen by different observers would
be related by a Lorentz transformation. This is not obvious. To prove it we would have to discuss how an observer
actually measures distances and time intervals. Again, any book on relativity will explain this essential fact; Einstein
original article is scarily understandable. Here, we will assume eq. (5)describes the relation between measurements of
different observers and explore the formalism this leads to.

Lorentz transformations do not preserve
∑3
µ=0 v

µvµ. In order to get an invariant we define the covariant components

of a vector (denoted by lower indices) as vµ = (v0,−v1,−v2,−v3). Then
∑3
µ=0 v

µvµ is an invariant. (Sometimes we
say “covariant” and “contravariant” components of the same vector, implying they are the same object presented in
two different ways. Other times we say “covariant vector” or “contravariant vector”, implying they are two different
objects. But both ways of saying mean exactly the same thing. I know, this is confusing, but I was not the one who
invented it.) The regular components of vectors (also known as contravariant components) transform as

vµ =

3∑
ν=0

Lµνv
ν . (6)

We can find how the covariant components vµ change under a change of basis by demanding that
∑3
µ=0 v

µvµ remains
the same. We find

v′µ =

3∑
ν=0

vν(L−1)νµ . (7)

It is easy to check now that, with these transformation laws the combination
∑3
µ=0 v

µwµ is indeed invariant 1

v′µw
′µ = (L−1)βµvβL

µ
αw

α = (L−1)βµL
µ
α︸ ︷︷ ︸

δβα

vβw
α = δβαvβw

α = vαw
α. (8)

Similarly, we can have 4-tensors with any number of upper and lower indices. Each index transforms like the contra-
or co-variant components of a vector. For instance, a rank-two mixed (covariant and contravariant) tensor transforms
as

T ′µν = (L−1)βνL
µ
αT

α
β . (9)

A sum over any two repeated index (as in vµvµ) leads to another quantity transforming like a tensor.
Just like tree-tensors, we can multiply any number of tensors of any rank and sum over pair of repeated indices and

we will get another tensor. The only difference between 3- and 4-tensors is that the two indices contracted (summed
over) need to be one covariant (downstairs) and one contravariant (upstairs).

1 At this point we revert to the Einstein convention and drop the summations signs. Any pair of identical indices, one upstairs and one
downstairs, are assumed to be summed over.
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We can find the covariant components of a vector from its contravariant components as

vµ = gµνv
ν (10)

where the symbol gµν (called the “metric”) stands for:

gµν =

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (11)

It turns out that gµν is an invariant tensor, that is, it had the same components in any orthonormal basis 2 This can
be verified by using explicit expressions for the Lorentz transformations like eq. (5).
gµν can also be used to relate co- and contravariant components of a higher rank tensor tensor

Tµν = gµαgνβT
αβ . (12)

The inverse matrix, gµν (with the same components as gµν) can be used to raise indices:

vµ = gµνvν . (13)

since gµνg
νλ = δλµ. Using the gµν tensor we can give a general characterization of Lorentz transformations. By

definition they keep eq. (3) invariant, so

gµνv
′µw

′ν = gµνL
µ
αL

ν
βv

αwβ = gµνv
µwν (14)

for any v and w so

gµνL
µ
αL

ν
β = gαβ . (15)

Notice that the same calculation in 3D would have δµν instead of gµν and the relation above would be equivalent to
the statement that LLT = 11.

We saw before that the space derivatives transform under rotations as a vector. The spacetime derivatives transform
a covariant vector

∂

∂x′µ
=

∂xν

∂x′µ

∂

∂xν
=
∂(L−1)ναx

′α

∂x′µ

∂

∂xν
= (L−1)νµ

∂

∂xν
. (16)

Derivatives are so frequent that we will use the notation

∂µ =
∂

∂xµ
. (17)

Finally, just like in 3D we had the invariant tensor εijk, in 4D Minkowski space we have the invariant tensor εµνλρ.
The proof that this is an invariant tensor is essentially the same as in 3D.

Maybe now it would be a good idea to summarize everything in the Prime Directive:

One can make tensors by multiplying any number of tensors of any rank, including the invariant
tensors δνµ, gµν , g

µν and εµνλρ, and contracting co- and contravariant indices pairwise. There is no other
way.

Everything else is not Lorentz invariant so it cannot describe Nature.

2 In Minkowski space an orthonormal basis is one where the four vectors are orthogonal, one has magnitude 1 and three have magnitude
−1.


