ELECTRODYNAMICS

 $\begin{array}{cccc} PROBLEM & SET & 5 \\ due & March & 2^{nd}, & before & class \end{array}$

Problem 1: Relaxation method

Implement the relaxation algorithm described in class to find the potential inside a region with the shape as in the figure. The top edge is kept at $\phi = V$ and the other borders at $\phi = 0$. Estimate the error in your answer. Can you achieve a 1% precision at the center of the upper left square? (you can use units where V = 1, L = 1).

Problem 2: Dipole layer

Two parallel infinite planes are charged with charge densities σ and $-\sigma$. Plot the potential along a direction perpendicular to the planes. WHat is the potential drop across both planes? hint: this is as trivial as it looks

Problem 3: Infinite cylinder Consider an cylinder with radius a and length L. The curved surface and the bottom z=0 face of the cylinder are kept at potential $\phi=0$. The top of the cylinder is z=L is kept at $\phi=V$. Compute the potential inside the cylinder. Use the properties of these Bessel function you may need without proof.