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The basic postulates of statistical mechanics are used to derive and explain the laws of thermodynamics.  
Our approach relies upon the information-theory concept of disorder and identifies the disorder within a 
statistical ensemble with thermodynamic entropy. 

Initialization

à Defaults and packages

ClearAll@"Global`∗"D;
Off@General::spell, General::spell1D
Needs@"Utilities`Notation`"D

à Dirac notation

Unprotect @ RowBox;
RowBox@8"H", TagBox@arg_, Ket, opts___D, "L"<D :=

TagBox@arg, Ket, optsD;
RowBox@8"H", TagBox@arg_, Bra, opts___D, "L"<D :=

TagBox@arg, Bra, optsD;
RowBox@8"H", TagBox@arg_, BraKet, opts___D, "L"<D :=

TagBox@arg, BraKet, optsD;
Protect @ RowBox;

Unprotect @ FullForm;
FullForm ê:

TagBox@StyleBox@expr_,
Verbatim@ ShowSpecialCharacters → FalseD, rest__D, FullFormD :=

TagBox@StyleBox@expr, restD, FullFormD;
Protect @ FullForm;



NotationAH_ˆ y Operator@H_DE
NotationAλ_H_ˆ y EigenKetAλ_, H_ˆ EE
Notation@ » ψ__\ y Ket@ψ__DD
Notation@Xψ__ » y Bra@ψ__DD
Notation@Xψf__ » ψi__\ y Braket@8ψf__<, 8ψi__<DD
AddInputAlias@ » f\, "ket"D
AddInputAlias@Xf », "bra"D
AddInputAlias@Xf » f\, "braket"D

Ensemble averaging

According to quantum mechanics, the state of an isolated system is represented by a state vector y  which may be 
expanded in a complete orthonormal basis according to

y = ‚
a

aa xa

where

aa = Xxa » y\ Xxb » xa\ = da,b

Suppose that we prepare an ensemble consisting of a very large number of identical systems, all prepared in the same 
quantum state y , and perform the same measurement upon each member of the ensemble.  An observable quantity A  is 
represented by a hermitian operator A

`
.  Unless the system is prepared in one of the eigenstates of A

`
, these measurements 

will produce a distribution of results 8Ak , k = 1, N<  whose average value XA
` \ = Xy » A

`
 » y\ = ‚

a,b

 aa ab
* Xxb » A

`
 » xa\ = lim

NØ¶

1
ÅÅÅÅÅÅÅ
N

 ‚
k=1

N

Ak

approaches the quantum mechanical expectation value in the limit of large N .  Even though the state vector obeys a 
completely deterministic equation of motion

Â 
∑ y
ÅÅÅÅÅÅÅÅÅÅÅ
∑ t

= H
`

 y

the quantum mechanical measurement process is inherently statistical, such that observable quantities require statistical 
averaging even if the quantum state is known perfectly.

Often it is not possible to prepare an ensemble in which every member is represented by precisely the same quan-
tum state.  For example, suppose that a polarized ion source is used to produce a beam of protons.  The source may be 
designed to produce more protons with spin up than with spin down, but it is usually not possible to guarantee that every 
proton has spin up.  Therefore, we consider a statistical ensemble consisting of many similar, but necessarily identical, 
systems and let Pi  represent the probability, or relative frequency, with which a state yi  appears within the ensemble.  If 
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our polarized source is very good, PÆ  should be close to unity and P∞  should be small.  Each state yi  in the ensemble can 
be expanded in a complete orthonormal basis according to

yi = ‚
a

ai,a xa

To obtain the ensemble average of the expectation value of A
`

, we must weight the expectation value XAi\  with the fre-
quency Pi  for the corresponding wave function yi .  Hence, the ensemble average becomesXA

` \êêêêêê
= ‚

i
Pi Ai = ‚

i
 Pi Xyi » A`  » yi\ = ‚

i
 ‚

a,b

 Pi ai,a ai,b
* Xxb » A`  » xa\

where the overline indicates ensemble averaging with respect to states and angle brackets denote quantum-mechanical 
averaging.  Notice that Yxb » A

` » xa]  is independent of the properties of the ensemble.  Therefore, it is useful to define a 
density operator 

r̀ = ‚
i

 » yi\ Pi Xyi »
with matrix elements

ra,b = Xxa » r̀ » xb\ = ‚
i

 Xxa » yi\ Pi Xyi » xb\ = ‚
i

Pi ai,a ai,b
*

that describes the statistical properties of the ensemble.  Recognizing that the probabilities Pi  are real, we observe that the 
density operator is hermitian because the matrix elements satisfy

rb,a = ra,b
* ï r̀† = r̀

The ensemble average for the expectation value of A
`

 can now be expressed in the formXA
` \êêêêê

= ‚
i

 Pi Xyi » A`  » yi\ = Tr r̀A
`

because

Tr r̀A
`

= ‚
a

 Xxa » r̀A
`

 » xa\ = ‚
a,b

 Xxa » r̀ » xb\ Xxb » A`  » xa\ = ‚
i,a,b

 Pi ai,a ai,b
* Xxb » A`  » xa\

Thus, the statistical matrix ra,b  facilitates ensemble averaging of quantum mechanical expectation values.  

The density operator can be expressed in an arbitrary representation as

r̀ = ‚
a,b

 » xa\ ra,b Xxb »
where 

ra,b = Xxa » r̀ » xb\ = rb,a
*

are matrix elements with respect to the basis denoted by » xa\ .  The diagonal matrix elements ra,a  represent the probability 
for state » xa\ , whereas the magnitudes of off-diagonal matrix elements » ra,b »  represent the probabilities for spontaneous 
transitions between states » xa\  and » xb\ .  The symmetry » ra,b » = » rb,a »  is known as the principle of detailed balance, 
which states that transition probabilities for both forward and backward processes, a ¨ b , are equal.  Detailed balance is a 
consequence of time-reversal invariance of the hamiltonian.

Consider another basis, denoted by » fa\ , obtained by a unitary transformation U  satisfying U U† = È  where È  is 
the unit matrix.  These bases are related by
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» xa\ = ‚
b

 Ua,b » fb\ , » fb\ = ‚
g

 Ub,g
†  » xg\

Matrix elements of the density operator in these two representations are then related byXfa » r̀ » fb\ = ‚
a£,b£

 Yxa£ … Ua£,a r̀ Ub,b£
† … xb£]

Therefore, the density operator transforms according to 

x öU f ï r ö U r U†

under a unitary transformation of the basis states.  Nevertheless, because the trace of any operator is independent of basis, 
the equation XA

` \êêêêê
= Tr r̀A

`
 can be used in any basis, diagonal or not.  To verify that the trace is independent of basis, we 

note that

Tr B
`

A
`

= ‚
i, j

Bi, j A j,i = ‚
i, j

Ai, j B j,i = Tr A
`

B
`

ï Tr U  A
`

 U† = Tr A
`

 U† U = Tr A
`

for any unitary transformation satisfying U† U = È .  Furthermore, because a hermitian matrix can be diagonalized by 
means of a unitary transformation, there exists at least one representation in which the density operator is diagonal.  There-
fore, in a diagonal representation represented by the complete orthonormal basis » ha\ , the density operator takes the 
simple form

r̀ = ‚
a

» ha\ Pa Xha »
where the coefficients Pa  are real eigenvalues satisfying

r̀ » ha\ = Pa » ha\
From the original definition of the density operator it is clear that Pa ¥ 0 is positive definite and represents the frequency 
with which state » ha\  appears in the ensemble.  

Although it is often difficult to construct a diagonal representation explicitly, the mere existence of such a represen-
tation greatly simplifies formal derivations.  Furthermore, it is often inconvenient, particularly in numerical simulations, to 
enforce the normalization of the density operator.  Under those circumstances we express the ensemble average in the formXA

` \êêêêê
=

Tr r̀A
`

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Tr r̀

where the denominator renormalizes the density operator.  We will soon find that the density matrix provides a convenient 
and powerful method for studying the statistical properties of quantum ensembles and is easily generalized to include 
classical ensembles also.  Beyond thermodynamics, density-matrix methods find widespread applications to many topic, 
including scattering theory, beam transport, and measurement theory.
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Pure and mixed ensembles

Suppose that we could prepare a pure ensemble in which every member is represented by the same wave function, 
y.  If we happen to choose a representation in which that state is one of the basis states, we would find that one of the 
diagonal matrix elements of the density operator would be unity and that all other matrix elements would vanish.  How-
ever, if we are working with a representation in which 

y = ‚
a

aa xa

appears  to be a nontrivial linear superposition of basis states, the density matrix would appear to be much more compli-
cated and it might appear, at first glance, that the ensemble contains a mixture of states.  Nevertheless, one can distinguish 
a pure ensemble from a mixed ensemble by means of a simple statistical test.  The ensemble average of any operator A

`
 can 

be evaluated according to XA
` \êêêêê

= Tr r̀A
`

= ‚
i

 Pi Xyi » A`  » yi\
and is simplest in a diagonal representation.  Consider the ensemble average of the unit operator.  If we let A

`
Ø È` , we find 

Tr r̀ = ⁄i Pi = 1 for a properly normalized ensemble.  On the other hand, if we let A
`

Ø r̀ , we find

Tr r̀2 = ‚
i

Pi
2 § Tr r̀

where equality pertains only for a pure ensemble for which there exists a representation in which only a single Pi  is 
nonzero.  More general ensembles composed of more than one unique stationary state are known as mixed ensembles 
andcannot be reduced to a single state vector in any representation.  Therefore, we the rules

r̀2 = r̀              ï pure ensemble
Tr r̀2 < Tr r̀   ï mixed ensemble

distinguish between pure and mixed ensembles independently of representation.

Unfortunately, one commonly finds pure or mixed ensembles described as pure or mixed states.  This terminology 
is misleading because any state can be represented as a linear superposition of basis states, and hence seems to be mixed, 
but an ensemble formed from a single state vector is pure no matter how that state vector is distributed among the basis 
states.  The difference is that a mixed ensemble can never be formed from a single state vector, no matter how complex its 
representation, while any pure ensemble contains only a single state vector no matter how complex its density matrix.

à Example: density matrix for spin 1ÄÄÄÄÄ2

Consider a pure state described by the Pauli spinor

y =
ikjjj a

b
y{zzz

whose density matrix is
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r̀ = » y\ Xy » =
ikjjj a

b
y{zzz H a* b* L =

ikjjj a a* a b*

b a* b b*
y{zzz

The polarization P”÷÷ = Tr r̀ s”÷÷  is the expectation value of the spin operator, where

sx = ikjjj 0 1
1 0

y{zzz sy = ikjjj 0 -Â

Â 0
y{zzz sz = ikjjj 1 0

0 -1
y{zzz

in the Pauli representation.  Direct computation yieldsXy » sx » y\ = H a* b* L ikjjj 0 1
1 0

y{zzz 
ikjjj a

b
y{zzz = b a* + a b*Xy » sy » y\ = H a* b* L ikjjj 0 -Â

Â 0
y{zzz 
ikjjj a

b
y{zzz = -Â Hb a* - a b*LXy » sz » y\ = H a* b* L ikjjj 1 0

0 -1
y{zzz ikjjj a

b
y{zzz = a a* - b b*

so that

P”÷÷ =
ikjjjjjjjjj
2 Re Hb a*L
2 Im Hb a*L†a§2 - †b§2 y{zzzzzzzzz

is the polarization for a pure state.  Alternatively, we could employ the trace method, whereby

Px = Tr r̀sx = Tr ikjjj a a* a b*

b a* b b*
y{zzz ikjjj 0 1

1 0
y{zzz = Tr ikjjj a b* a a*

b b* b a*
y{zzz = b a* + a b*

Py = Tr r̀sy = Tr ikjjj a a* a b*

b a* b b*
y{zzz ikjjj 0 -Â

Â 0
y{zzz = Tr ikjjj Â a b* -Â b a*

Â b b* -Â b a*
y{zzz = -Â Hb a* - a b*L

Pz = Tr r̀sz = Tr ikjjj a a* a b*

b a* b b*
y{zzz ikjjj 1 0

0 -1
y{zzz = Tr ikjjj a b* -a b*

b a* -b b*
y{zzz = a a* - b b*

in agreement with the previous result.

The polarization vector for any pure state must have unit magnitude because the particle definitely has spin 1ÅÅÅÅ2 .» P
”÷÷ »2 = » b a* + a b* »2 + » b a* - a b* »2 + » a a* - b b* »2
= 2 » a »2 » b »2 +2 Re Ha b* b a*L + 2 » a »2 » b »2 -2 Re Ha b* b a*L + » a »4 + » b »4 -2 » a »2 » b »2

= » a »4 + » b »4 +2 » a »2 » b »2
= H » a »2 + » b »2L2

= 1

Therefore, any pure state is completely polarized in some direction.  A few examples follow.

ψ P” ρ̂ spin directionikjjj1
0
y{zzz ikjjjjjjjj0

0
1

y{zzzzzzzz ikjjj 1 0
0 0

y{zzz + z̀

ikjjj0
1
y{zzz ikjjjjjjjj 0

0
-1

y{zzzzzzzz ikjjj 0 0
0 1

y{zzz - z̀
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1ÅÅÅÅÅÅÅÅÅÅè!!!!2
 ikjjj1

1
y{zzz ikjjjjjjjj1

0
0

y{zzzzzzzz ikjjjjj 1ÅÅÅÅ2
1ÅÅÅÅ2

1ÅÅÅÅ2
1ÅÅÅÅ2

y{zzzzz + x̀

1ÅÅÅÅÅÅÅÅÅÅè!!!!2
 
ikjjj 1

-1
y{zzz ikjjjjjjjj-1

0
0

y{zzzzzzzz ikjjjjj 1ÅÅÅÅ2 - 1ÅÅÅÅ2

- 1ÅÅÅÅ2
1ÅÅÅÅ2

y{zzzzz - x̀

1ÅÅÅÅÅÅÅÅÅÅè!!!!2
 
ikjjj1

Â
y{zzz ikjjjjjjjj0

1
0

y{zzzzzzzz ikjjjjj 1ÅÅÅÅ2 - ÂÅÅÅÅ2
ÂÅÅÅÅ2

1ÅÅÅÅ2

y{zzzzz + ỳ

1ÅÅÅÅÅÅÅÅÅÅè!!!!2
 
ikjjj 1

-Â
y{zzz ikjjjjjjjj 0

-1
0

y{zzzzzzzz ikjjjjj 1ÅÅÅÅ2
ÂÅÅÅÅ2

- ÂÅÅÅÅ2
1ÅÅÅÅ2

y{zzzzz - ỳ

Any other direction can be obtained using an appropriate linear combination of basis states.

Given that the space of 2×2 matrices is spanned by the set of matrices 8È, s”÷÷ < , an arbitrary density matrix can be 
represented in the form

r =
1
ÅÅÅÅÅ
2

 IÈ + P”÷÷ ÿ s”÷÷ M =
1
ÅÅÅÅÅ
2

 
ikjjj 1 + Pz Px - ÂPy

Px + ÂPy 1 - Pz

y{zzz
such that Tr r = 1 as required by the normalization of the wave function.  Recognizing that s”÷÷  is hermitian, hermiticity of r  
requires that P”÷÷  be real.  Also note that Tr si = 0.  To determine the requirements for a pure ensemble, we evaluate

r2 =
1
ÅÅÅÅÅ
4

 J1 + 2 P
”÷÷

ÿ s”÷÷ + IP”÷÷ ÿ s”÷÷ M2N =
1
ÅÅÅÅÅ
4

 I1 + 2 P
”÷÷

ÿ s”÷÷ + … P
”÷÷ …2M

so that

Tr r2 =
1
ÅÅÅÅÅ
2

 I1 + » P”÷÷ »2M
Therefore, a pure ensemble requires » P”÷÷ »2 = 1, as expected, whereas Tr r2 < 1 for a mixed ensemble requires » P”÷÷ »2 < 1.  
Hence, P”÷÷  must be a real vector with » P”÷÷ » § 1.  Finally, upon evaluation of the ensemble average Xs”÷÷ \ = Tr rs”÷÷ =

1
ÅÅÅÅÅ
2

 Tr Is”÷÷ + P”÷÷ ÿ s”÷÷  s”÷÷ M = P”÷÷
we conclude that P”÷÷  represents the average polarization for an ensemble.  Clearly, » P”÷÷ » = 0 corresponds to an unpolarized 
ensemble while density matrices with » P”÷÷ » < 1 describe mixed ensembles with partial polarization.

Ordinarily, one visualizes an unpolarized beam as a stream of particles whose spin orientations are random, equally 
likely to be found in any direction, but we have found that an unpolarized beam is described by a density matrix that is 
simply proportional to the unit matrix, such that P”÷÷ = 0 fl r̀ = 1ÅÅÅÅ2  È  for spin 1ÅÅÅÅ2 .  More generally, such a beam can be 
composed of equal admixtures of oppositely polarized beams because the density matrices for ≤ z̀ , ≤ ỳ , or ≤ x̀  add to the 
unit matrix.  However, such beams may not be constructed simply by adding the corresponding spinors because a unique 
spinor implies unit polarization.  For example, superposing spin up and spin down with positive phase

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!2 ÄÇÅÅÅÅÅÅÅÅikjjj1

0
y{zzz +

ikjjj0
1
y{zzzÉÖÑÑÑÑÑÑÑÑ =

1
ÅÅÅÅÅÅÅÅÅÅÅÅè!!!2  

ikjjj1
1
y{zzz

yields a pure state polarized in the x̀  direction.  The difference between adding density matrices and adding spinors is 
found in the phase relationships among the basis states — the phases for members of an ensemble are random and unre-
lated.  Suppose that we add two spinors with relative phase d , such that
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y =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!2  
ikjjj 1

‰Â d
y{zzz ï r@dD =

1
ÅÅÅÅÅ
2

 
ikjjj 1 ‰-Âd

‰Âd 1
y{zzz ï rêê =

1
ÅÅÅÅÅ
2

 
ikjjj 1 0

0 1
y{zzz

is the corresponding density matrix.  If the phase is random, varying rapidly in time or between different members of the 
ensemble, the off-diagonal elements, ‰≤Âd , must average to zero so that r̀ Ø 1ÅÅÅÅ2  È  for an unpolarized beam.  More generally, 
we can represent an arbitrary spinor using two real amplitudes a, b  and a relative phase d

y =
ikjjj a
b ‰Â d

y{zzz ï r@dD =
ikjjj a2 ab‰-Âd

ab‰Âd b2
y{zzz ï rêê =

ikjjj a2 0
0 b2

y{zzz
such that the density matrix is diagonal whenever the phases are random.  In most situations, such as a beam of particles, it 
is not possible to maintain coherence between members of an ensemble.  Therefore, one normally invokes the postulate of 
random phases and employs a diagonal density matrix comprised of relative probabilities for each basis state.

Stationary ensembles

Thermodynamic equilibrium requires the macroscropic properties of a system to be independent of time.  From a 
quantum mechanical point of view, thermodynamic equilibrium requires the ensemble averageXA

` \êêêêê
=

Tr r̀A
`

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Tr r̀

for expectation values of the operators representing those macroscopic properties to be independent of time.  Assuming 
that the operator A

`
 carries no explicit time dependence, a stationary observable then requires the density matrix to be 

independent of time also.  The time dependence of r̀  can be obtained most easily using a diagonal representation, here 
simply denoted by » i\ .  Using the Schrödinger equation, we find

Â
„ r̀
ÅÅÅÅÅÅÅÅÅÅÅ
„ t

= ‚
i

 
ÄÇÅÅÅÅÅÅÅÅJPi JÂ

„
ÅÅÅÅÅÅÅÅÅ
„ t

 » i\N Xi » + » i\ JÂ
„

ÅÅÅÅÅÅÅÅÅ
„ t

 Xi » NN + Â
∑ PiÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ t

 » i\ Xi » ÉÖÑÑÑÑÑÑÑÑ
= ‚

i

 
ÄÇÅÅÅÅÅÅÅÅPi IH`  » i\ Xi » - » i\ Xi » H

` M + Â
∑ PiÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ t

 » i\ Xi » ÉÖÑÑÑÑÑÑÑÑ
such that

„ r̀
ÅÅÅÅÅÅÅÅÅÅÅ
„ t

= -Â AH` , r̀E +
∑ r̀
ÅÅÅÅÅÅÅÅÅÅ
∑ t

The first term describes the evolution of the ensemble due to the evolution of the state vectors themselves and, hence, is 
governed by the hamiltonian of the system.  The second term describes the possible time dependence of the state probabili-
ties Pi@tD  due to changing conditions of the environment.  However, because we usually maintain the environment in a 
steady state, or with very slow variation, the second term is usually negligible.  Furthermore, we assume that the hamilto-
nian does not depend explicitly on time so that the energy of each system is conserved (in a macroscopic sense).  Thus, in 
the energy representation we find

r̀ = r@H` D ï AH` , r̀E = 0 ï
„ r̀
ÅÅÅÅÅÅÅÅÅÅÅ
„ t

=
∑ r̀
ÅÅÅÅÅÅÅÅÅÅ
∑ t

Ø 0
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Therefore, equilibrium is represented by a stationary ensemble whose density matrix is an explicit function of a time-
independent hamiltonian.

The canonical ensemble, familiar from elementary statistical mechanics, stipulates a density operator of the form

r̀ = ‰- b H
`

This density operator satisfies the conditions required for a stationary ensemble — it is an explicit function of H
`

 and, 
hence, is stationary if H

`
 has no explicit time dependence.  Using an energy representation, ensemble averages then take the 

familiar form XA
` \êêêêê

=
Tr r̀A

`

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Tr r̀

=
⁄i ‰- b Ei  AiÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ⁄i ‰- b Ei

in which states are weighted by the Boltzmann factor ‰- b Ei .  Thus, the canonical ensemble is based upon a particularly 
useful example of a stationary density operator, but we will find that other density operators are also useful.  

Disorder

Consider an experiment consisting of N independent random trials with n possible outcomes for each trial.  For 
example, there are n = 6 possible outcomes for each cast of a standard die.  In the absence of information to the contrary, 
we assign equal a priori probabilities to each possible outcome, such that 8Pi = n-1, i = 1, n< .  Thus, a uniform probability 
distribution represents the situation in which we possess the least information about the system: we know only the number 
of possible states of the die.  From the probability distribution 8Pi<  we can use standard combinatorial techniques to 
compute the probability for any particular outcome of the N trials.

Alternatively, we can determine objective probabilities by measuring the frequency fi = Ni ê N  for each possible 
outcome.  In the limit of many trials, the frequency approaches a limiting value identified as the objective probability

Pi = lim
NØ¶

NiÅÅÅÅÅÅÅÅÅ
N

If, for example, we discovered that P1 = 1 and 8Pi = 0, i = 2, n< , we could then predict the outcome of subsequent trials 
with nearly complete certainty.  Our information about the system is maximized when the probability distribution exhibits 
the least disorder (it is the most asymmetric).  We describe an unbiased die as fair in part because no one can possess more 
information about its properties than we, whereas a biased die is unfair to the gambler who lacks the information that is 
potentially available.  Intermediate situations in which the predictability of the outcome for each trial is neither completely 
certain nor completely uncertain are characterized by probability distributions which are neither completely concentrated 
nor completely uniform.  Hence, we seek an objective measure of the disorder D within a probability (or frequency) 
distribution with the following properties.

1) The measure of disorder should be defined entirely by the distribution  8Pi, i = 1, n< .

2) 8Pi = 1, P j∫i = 0< ï D = 0 is minimized

3)  8Pi = n-1, i = 1, n< ï D = Dmax  is maximized

4) Dmax  is a monotonically increasing function of n.
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5) The disorder should compound additively, such that D@I ‹ IID = DI + DII  where I and II represent statistically 
independent experiments.

It can be shown that these requirements determine the disorder function

D = -‚
i=1

n

Pi lnPi

uniquely, up to an arbitrary multiplicative scale factor chosen here to be unity.  Although we will not provide the unique-
ness proof, it is worth demonstrating that the proposed definition for disorder satisfies each of the requirements above.

Obviously, D vanishes if any Pi = 1.  Furthermore, we can use the method of Lagrange multipliers to prove that D 
is maximized for a uniform probability distribution.  At an extremum of D infinitesimal variations dPi  in the probabilities 
should produce no first-order change dD , such that

dD = ‚
i=1

n ∑ D
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ Pi

 dPi = 0 ï ‚
i=1

n H1 + lnPiL dPi = 0

The constraint ‚
i=1

n

Pi = 1 ï ‚
i=1

n

dPi = 0

is enforced using a Lagrange multiplier l , such that‚
i=1

n H1 + lnPiL dPi + l ‚
i=1

n

 dPi = 0

where the variations dPi  can now be treated independently, so that

1 + lnPi + l = 0 ï lnPi = -H1 + lL for all i

Thus, we obtain maximum disorder for a uniform probability distribution:8Pi = n-1, i = 1, n< ï D = Dmax = ln n

Finally, if

D1 = - ‚
i=1

n

pi ln pi

D2 = - ‚
j=1

m

q j ln q j

are partial disorders for two independent experiments with probability distributions 8pi, i = 1, n<  and 8q j, j = 1, m< , the 
composite disorder within the combined experiment would be

D = - ‚
i, j

pi q j ln Hpi q jL = - ‚
i, j

H pi Hq j ln q jL + q j Hpi ln piL L
assuming statistical independence, Pi, j = pi q j , applies.  Hence, using ⁄i pi = 1 and ⁄ j q j = 1, we find

D = D1 + D2

and conclude that disorder is additive for statistically independent systems.  
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Therefore, the function D = -⁄i Pi ln Pi  satisfies all the characteristics required to measure disorder.  It is also 
useful to observe that D  can be interpreted as an ensemble average of ln Pi , whereby

D = X-ln P\ = -‚
i

Pi ln Pi

Of course, Pi  is itself defined as the frequency with which state i occurs in the ensemble.

Correlations Reduce Disorder

Suppose that two systems interact and let Pi, j  represent the probability that system 1 is found in state i while system 
2 is simultaneously found in state j, such that ⁄i, j Pi, j = 1.  Further, let Pi

H1L  be the probability that system 1 is found in 
state i independent of the state of system 2, while P j

H2L  is the probability for state j of system 2 independent of system 1, 
such that

Pi
H1L = ‚

j
Pi, j P j

H2L = ‚
i

Pi, j‚
i

Pi
H1L = ‚

j
P j

H2L = ‚
i, j

Pi, j = 1

The combined disorder is

D = - ‚
i, j

Pi, j ln Pi, j

whereas the individual disorders would be

D1 = - ‚
i

Pi
H1L ln Pi

H1L D2 = - ‚
j

P j
H2L ln P j

H2L
if the two systems were isolated and had the same distributions as when interacting.  To compare these disorders, we note 
that

D - D1 - D2 = ‚
i

Pi
H1L ln Pi

H1L + ‚
j

P j
H2L ln P j

H2L - ‚
i, j

Pi, j ln Pi, j

= ‚
i, j

H Pi, j ln Pi
H1L + Pi, j ln P j

H2L - Pi, j ln Pi, j L
such that

D - D1 - D2 = „
i, j

Pi, j ln
Pi

H1L P j
H2L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Pi, j

Recognizing that 

ln x § x - 1 ï „
i, j

Pi, j ln
Pi

H1L P j
H2L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Pi, j

§ ‚
i, j

HPi
H1L P j

H2L - Pi, jL = 0
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we discover that

D § D1 + D2

where equality requires statistical independence (Pi, j = Pi
H1L P j

H2L ).  Therefore, correlations between subsystems reduce the 
composite disorder; disorder is greatest for independent, noninteracting subsystems.

For many systems considerable insight can be obtained using an ideal approximation that neglects interactions 
between elements or subsystems.  For example, the ideal approximation treats a fluid as a collection of noninteracting 
particles within a container distributed among single-particle energy levels; this is a good approximation for a low-density 
gas and remains useful even as the condensation phase transition is approached.  Similarly, ideal paramagnetism neglects 
spin-spin interactions between atoms; this is a good approximation for paramagnetic salts in which only a relatively small 
fraction of the atoms carry magnetic moments and the separation between magnetically active atoms is large.  For other 
systems we might be able to determine the spectrum of normal modes of vibration or excitation and to treat these normal 
modes as statistically independent subsystems.  Therefore, ideal systems consisting of N  noninteracting, statistically 
independent elements or subsystems represent an important limiting case.  We now demonstrate that additivity of disorder 
for statistically independent subsystems can be generalized to N  elements. 

Let s j  represent the quantum numbers needed to specify the state of element j .  The probability PN @8s j<D  for a 
particular configuration of N  statistically independent elements, represented by the set of state variables 8s j, j = 1, N< , is 
simply the product of the probabilities P j@s jD  that each element is found in its specified state, such that

PN @s1, s2, …sND = ‰
j=1

N

P j@s jD
The disorder is the summation over all possible N -body configurations

D = -‚8s j< P@8s j<D ln P@8s j<D = -„8s j<
ikjjjjjjikjjjjjj‰j

P j@s jDy{zzzzzz ‚
k=1

N

ln Pk@skDy{zzzzzz = - „8s j< „
k=1

N ikjjjjjjln Pk@skD ‰
j

P j@s jD y{zzzzzz
Each term in the product with j ∫ k  can be summed over all values of s j , reducing to a factor of unity.  There are N  terms 
with j = k , such that the total disorder reduces to a summation over the separate contribution of each element

statistical independence ï D = ‚
j=1

N

D j where D j = - ‚
s j

P j@s jD ln P j@s jD
where the summation in D j  spans the states available to element j .  If each element has the same spectrum of states and 
the same probability distribution, the net disorder is simply N  times the disorder for a single element.

N identical elements ï D = N D1 where D1 = -‚
s1

P1@s1D ln P1@s1D

Postulates of Quantum Statistical Mechanics

In quantum mechanics we analyze the behavior of a system by dividing the universal hamiltonian H`  into three parts
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H` = H
`

+ H
` £

+ D H
`

where H
`

 describes the system of interest, H
` £

 describes its environment (the remainder of the universe), and DH
`

 describes 
the coupling between them.  Let yi@xD = Xx » yi\  represent a complete orthonormal set of wave functions spanning the 
Hilbert space defined by H

`
 in terms of the set of coordinates x  describing the system and let f j@yD = Xy » f j\  represent a 

complete orthonormal set of wave functions for the Hilbert space defined by H
` £

 in terms of the environment variables y .  
The universal wave function

Y@x, y, tD = ‚
i,i

ci, j@tD yi@xD f j@yD
can then be expanded in terms of product states yi f j  with coefficients

ci, j = Xyi f j » Y\
Alternatively, we can focus our attention upon the system by absorbing the environment wave function into the expansion 
coefficients by defining

Y@x, y, tD = ‚
i

ci@y, tD yi@xD
where

ci@y, tD = ‚
j

ci, j@tD f j@yD
hides our ignorance about the state of the universe in an implicit dependence of ci  upon y , which is treated as a random 
multidimensional variable.

Let the hermitian operator A
`

 acting only upon the system variables x represent an observable property of the 
system and consider an ensemble consisting of many identical universes prepared in the same quantum state Y .  The 
average value of the observable A

`
 obtained from instantaneous measurements performed upon each member of the ensem-

ble (at the same time) would then be the expectation value

A@tD =
XY » A`  » Y\
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅXY » Y\ =

‚
i, j

 ci
*@y, tD c j@y, tD Xyi » A`  » y j\

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ⁄i ci
*@y, tD ci@y, tD

However, we are less interested in the instantaneous expectation value of A
`

 than in its value averaged over a time interval 
that is short compared with the resolving time of the apparatus (macroscopically short) but long compared with quantum 
fluctuation rates (microscopically long) such that the environment variables are averaged over many states.  Thus, we 
define the thermodynamic variable as

A
êêê

= A@tDêêêêêê
=

‚
i, j

 r j,i Xyi » A`  » y j\
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ⁄i ri,i

=
Tr r̀ A

`

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Tr r̀

where the statistical matrix (or density matrix) ri, j  is defined as

ri, j = ci@y, tD c j
*@y, tDêêêêêêêêêêêêêêêêêêêê

The time average is taken with respect to an interval that is macroscopically short but microscopically long.

Thus far we have avoided making any approximations or introducing any new assumptions or postulates beyond 
those already contained in quantum mechanics.  However, to make further progress we must introduce two postulates 
concerning the properties of the statistical matrix.  These postulates are most easily formulated in the energy representa-
tion, such that
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H
`

yi = Ei yi

H
` £

f j = E j
£  f j

H` Y = ET Y with ET º Ei + E j
£

We assume that the coupling between the system and its environment is sufficiently weak that the energy of the system is 
found within a macroscopically narrow range E - 1ÅÅÅÅ2  DE § Ei § E + 1ÅÅÅÅ2  DE  containing many possible states of the system.  
Transitions between these states are mediated by DH

`
.  All states within this energy range which can be connected by DH

`
 

are considered accessible.  We assume that the environment is sufficiently complex, its states so numerous, and its transi-
tions so rapid that phase relationships between different states of the system cannot be maintained over microscopically 
long time intervals.  Thus we introduce the postulate of random phases.  

Postulate of random phases:   ci@y, tD c j
*@y, tDêêêêêêêêêêêêêêêêêêêê

= Pi di, j

Furthermore, we assume that the most probable equilibrium macrostate of the system maximizes its disorder, such that all 
accessible microstates occur with equal probability.

Postulate of equal a priori probability: each accessible microstate within the energy interval 
E - 1ÅÅÅÅ2  DE § Ei § E + 1ÅÅÅÅ2  DE  occurs with equal probability Pi = G@E, DED-1  where G@E, DED  represents 
the total number such states.

We will soon find that this postulate, commonly known as the statistical postulate, is incredibly powerful.

The most important consequence of the postulate of random phases is that thermodynamic quantities can be 
represented by ensemble averages, such that

A
êêê

=
Tr r̀ A

`

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Tr r̀

= ‚
i

Pi Ai

is diagonal in the energy representation.  The probability Pi  can now be interpreted as the frequency that microstate i 
occurs in the ensemble and Ai = Xyi » A`  » yi\  is the quantum mechanical expectation value for the operator A

`
 in system 

state i.  Thus, an average with respect to a complicated but very rapid time dependence is replaced by an incoherent 
average over the properties of stationary states.  Having eliminated the interference between different states of the system, 
we can imagine that the ensemble consists of a collection of stationary states of the system, without regard to their coupling 
to the environment.  The postulate of random phases requires there to be some coupling, otherwise degenerate states would 
necessarily interfere, but once the interferences are eliminated we can pretend that each member of the ensemble is isolated 
and, hence, is in a stationary state.  The problem of temporal averaging then reduces to counting states and determining 
frequencies.  Without interference the wave functions for different members of the ensemble become disentangled and can 
be viewed as distinct copies of the same system.

The loss of coherence between members of an ensemble with random phases finds an analogy in the description of 
an ordinary beam of light in terms of a superposition of wavelets with random phases or a stream of photons with random 
phases.  The latter clearly comprise a statistical ensemble.  Even if the light were nearly monochromatic, with a very 
narrow range of frequencies, ordinary light sources are composed of many independent emitters with uncorrelated phases 
such that the stream of photons becomes a collection of nearly identical particles with random phases which eliminate 
interference phenomena.  In order to observe interference using white light one must split the beam and then recombine the 
subbeams using only a small difference in path length.  Similarly, in the two slit experiment, either with light or electrons, 
attempts to determine which slit through which a particle passes disturbs the phase relationship between the two subensem-
bles (slits) and destroys the interference pattern.  Randomization of the phase by an external influence, here the environ-
ment the system interacts with, destroys the coherence between members of an ensemble.  Observables then become 
incoherent averages over the ensemble.
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Evolution of Disorder

Consider a system which is very nearly isolated, interacting only weakly with its environment.  We suppose that 
there exists a very large number of accessible states within a narrow energy range.  Transitions between these states are 
mediated by the weak coupling to the external environment as represented by a hermitian interaction hamiltonian that is 
invariant with respect to time reversal.  The principle of detailed balance then requires the transition probability Wi, j  
between a pair of states to be symmetric between forward and reverse directions, such that W j,i = Wi, j .  The probability 
Pi@tD  that the system will be found in state i at time t then evolves according to

„ PiÅÅÅÅÅÅÅÅÅÅÅÅÅ
„ t

= ‚
j∫i

Wi, j P j - ‚
j∫i

W j,i Pi

where the first term represents the transition rate into state i from all other states while the second is the rate out of state i 
into all other states j ∫ i .  Thus, using the principle of detailed balance, we obtain the master equation

„ PiÅÅÅÅÅÅÅÅÅÅÅÅÅ
„ t

= ‚
j

Wi, j HP j - PiL
which describes the irreversible behavior of the system.

The time dependence of D can now be analyzed using the master equation, whereby
„ D
ÅÅÅÅÅÅÅÅÅÅÅÅ
„ t

= -‚
i

H1 + ln PiL „ PiÅÅÅÅÅÅÅÅÅÅÅÅÅ
„ t

= - ‚
i, j

Wi, j HP j - PiL H1 + ln PiL
Alternatively, interchanging the summation indices and using the symmetry of Wi, j , we find

„ D
ÅÅÅÅÅÅÅÅÅÅÅÅ
„ t

= - ‚
i, j

W j,i HPi - P jL H1 + ln P jL = ‚
i, j

Wi, j HP j - PiL H1 + ln P jL
Combining these two forms, we obtain

„ D
ÅÅÅÅÅÅÅÅÅÅÅÅ
„ t

=
1
ÅÅÅÅÅ
2

 ‚
i, j

Wi, j HP j - PiL Hln P j - ln PiL
which is nonnegative because ln P  is a monotonically increasing function of P.  Hence, we conclude that

„ D
ÅÅÅÅÅÅÅÅÅÅÅÅ
„ t

¥ 0

where equality pertains if and only if Pi = P j  for all pairs of states which are connected by nonvanishing transition probabil-
ities.  Therefore, the disorder within the system increases monotonically until an equilibrium condition is reached for 
which all accessible states are equally likely.  Thus, we have justified the statistical postulate of equal a priori probabilities 
by demonstrating that systems naturally evolve toward equilibrium conditions characterized by maximum disorder consis-
tent with the external constraints upon them.
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It may appear paradoxical that irreversible behavior is predicted for macroscopic systems whose microscopic 
interactions are invariant under time reversal.  Although irreversibility is a universal aspect of our experience, where order 
inevitably yields to chaos, how does it arise from the Schrödinger equation and the principle of detailed balance?  Note that 
since all quantities appearing in the master equation are real and the time dependence is linear, the master equation is not 
invariant under time reversal (t Ø -t ) or trajectory reversal (t Ø -t  combined with complex conjugation).  The origin of 
this irreversibility may be traced to the neglect of phase relationships between the system and its environment, due ulti-
mately to our ignorance of the precise behavior of the environment (universe).  The loss of coherence between the states of 
the system and its environment implied by the postulate of random phases leads to the irreversibility of the master equation.

Actually, the weaker condition ⁄ j HWi, j - W j,iL = 0, which follows from causality (cf. Callen), is sufficient to 
ensure that Pi = n-1  in equilibrium.  Alternatively, if we were to regard the statistical postulate as fundamental, then we 
could deduce Wi, j = W j,i  in equilibrium, but since the transition probabilities are intrinsic properties of the dynamics of the 
system, we conclude that Wi, j = W j,i  for any distribution of states, be it equilibrium or not.

Finally, it is important to recognize that the equilibrium condition of equal a priori probabilities does not depend 
upon the transition probabilities between states.  If some state i is particularly difficult to reach because all transition 
probabilities Wi, j  from states j ∫ i  are very small, we would expect that state to be reached infrequently.  However, once it 
is reached, the dwell time in that state will be relatively long because all transition probabilities W j,i  which depopulate that 
state are also quite small.  Similarly, states which are easily reached are also quickly left.  Hence, frequency compensates 
dwell time so that in equilibrium the average time spent in each accessible state is equal, provided that the macroscopic 
averaging time is sufficiently long to ensure that all states are reached a statistically significant number of times.  Under 
these circumstances, the principle of detailed balance leads to equal objective probabilities as measured by temporal 
averages.

Statistical interpretation of thermodynamics

à Entropy and energy

Thermodynamic quantities represent ensemble averages in which many possible quantum states with similar 
macroscopic properties contribute according to their statistical weight in the ensemble.  Recognizing that the statistical 
matrix evolves toward a macrostate of maximum disorder in which all microstates compatible with the external constraints 
appear with equal probability, the macrostate with greatest probability is that which contains the largest number of avail-
able microstates.  Let G  represent the total number of microstates within a macrostate.  The disorder is then

D = -‚
i

Pi ln Pi = - G ln G-1 = ln G

where each available state is assigned equal probability Pi = G-1 .  Finally, recognizing that the disorder function was 
designed to mimic all important properties of thermodynamic entropy, it is natural to make a statistical definition of 
entropy as

S = -kB ‚
i

Pi ln Pi = kB ln G
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where the constant of proportionality is chosen to reproduce the thermodynamic temperature scale.  Therefore, the central 
problem of statistical mechanics becomes the determination of the dependence of the total number of available microstates 
upon the external constraints.

It is instructive to express entropy 

S = Y-kB ln P
` ]êêêêêêêêêêêêêêê

= -kB ‚
i

Pi ln Pi

as an ensemble average of the quantity -kB ln P
`

 where P
`

 is an operator whose expectation value is the frequency with 
which a state is represented in the ensemble.  Recognizing this operator as the density operator r̀ , we can formally express 
entropy as

S = X-kB ln r̀\êêêêêêêêêêêêêê
= -kB Tr r̀ ln r̀

assuming that r̀  is properly normalized.  Similarly, the internal energy can be represented as an ensemble average of the 
energy (hamiltonian) operator, such that

U = XH` \êêêêêê
= ‚

i
Pi Ei = Tr r̀ H

`

where Pi  is the frequency that state i with energy Ei  is represented in the ensemble.  

à Adiabatic processes

Consider a thermally isolated system upon which work may be performed by varying the external conditions 
without permitting heat exchange.  If we further assume that the external conditions vary sufficiently slowly so that the 
system is always arbitrarily close to equilibrium, transformations of state are also quasistatic.  Quasistatic adiathermal 
processes are described as adiabatic.  We now show that adiabatic processes do not change entropy and, hence, are 
reversible.

Suppose that the external conditions are changed by adjusting a parameter l , which then becomes time dependent 
(l = l@tD).  The time dependence of entropy can then be expanded in powers of „ l ê „ t  according to

„ S
ÅÅÅÅÅÅÅÅÅÅÅ
„ t

= A J „ l
ÅÅÅÅÅÅÅÅÅÅÅ
„ t

N2
+ ∫

where there is no constant term because the entropy of an equilibrium state remains constant in the absence of external 
changes.  Moreover, there is no linear term because „SÅÅÅÅÅÅÅÅ„t ¥ 0 independent of the sign of „lÅÅÅÅÅÅÅ„t .  When „lÅÅÅÅÅÅÅ„t  is small, we find

„ S
ÅÅÅÅÅÅÅÅÅÅÅ
„ t

= A J „ l
ÅÅÅÅÅÅÅÅÅÅÅ
„ t

N2
ï

„ S
ÅÅÅÅÅÅÅÅÅÅÅ
„ l

= A 
„ l
ÅÅÅÅÅÅÅÅÅÅÅ
„ t

ö 0

Thus, the entropy of a thermally insulated system is invariant with respect to adiabatic transformations.  Recognizing that ⁄ „ Pi = 0 because the probability distribution must remain normalized to unity, entropy changes can be related to changes 
in microstate probability according to

„ S = -kB ‚
i

H1 + ln PiL „ Pi = -kB ‚
i

ln Pi „ Pi

Hence, „ S = 0 suggests that the probabilities Pi  are independent of l .  This result is a consequence of Ehrenfest's theorem, 
which states that adiabatic processes do not cause transitions between states, but merely adjust energies and wave functions 
in a smooth, parametric fashion.  Therefore, adiabatic processes preserve the distribution of microstate probabilities within 
an ensemble.
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However, it is not always obvious when a process is sufficiently slow to be quasistatic because the equilibration or 
relaxation times for dissimilar systems vary considerably.  For example, adiathermal expansion or compression of a gas 
may be performed quite rapidly and still be adiabatic because the relaxation rate is governed by the velocity of sound.  
Indeed, the conditions for adiabatic expansion of a gas are often specified as "sufficiently rapid" to neglect thermal interac-
tion, which is often of more concern than the quasistatic requirement.  On the other hand, even with very slow variation of 
the magnetic field upon a ferromagnetic material, the magnetization will usually exhibit hysteresis and, hence, will not be 
reversible despite the extreme slowness of the variation of the external conditions.  In that case it is so difficult for a 
magnetic domain to spontaneously change its magnetization that the equilibration time is extremely long.

à Pressure

Suppose that the hamiltonian H
`

= H
` @lD  is an explicit function of the external parameter l , where the dependence 

upon internal variables has been suppressed for brevity.  The thermodynamic energy U@lD  is an ensemble average of the 
hamiltonian and will vary with l@tD  according to

U@lD = YH` @lD]êêêêêêêêêê
ï

„ U
ÅÅÅÅÅÅÅÅÅÅÅÅÅ

„ t
= [ „ H

`
ÅÅÅÅÅÅÅÅÅÅÅÅÅ

„ t
_êêêêêêêêêê

= [ ∑ H
`

ÅÅÅÅÅÅÅÅÅÅÅÅ
∑ l

_êêêêêêêêêê

 
„ l
ÅÅÅÅÅÅÅÅÅÅÅ
„ t

where we assume that the hamiltonian has no explicit time dependence.  On the other hand, we can consider U  to be a 
function of entropy and l , such that

„ U
ÅÅÅÅÅÅÅÅÅÅÅÅÅ

„ t
= ikjj ∑U

ÅÅÅÅÅÅÅÅÅÅÅÅ
∑ l

y{zzS
 

„ l
ÅÅÅÅÅÅÅÅÅÅÅ
„ t

where S  is constant for adiabatic processes.  Comparison of these expressions now reveals thatikjj ∑U
ÅÅÅÅÅÅÅÅÅÅÅÅ
∑ l

y{zzS
= [ ∑ H

`
ÅÅÅÅÅÅÅÅÅÅÅÅ
∑ l

_êêêêêêêêêê

Thus, the quantities

F
`

l = -
∑ H

`
ÅÅÅÅÅÅÅÅÅÅÅÅ
∑ l

play the role of generalized forces acting upon the system and we can express variations of internal energy in the form

„ U = T  „ S - ‚
l

Fl „ l

where the thermodynamic forces are identified as ensemble averages Fl = XF` l\êêêêêêê
.

If a system is confined to volume V  by external forces (walls), the pressure can be interpreted as a generalized 
force conjugate to the volume variable.  Thus, the fundamental relation for a simple compressible system becomes

p = -ikjj ∑U
ÅÅÅÅÅÅÅÅÅÅÅÅ
∑V

y{zzS
ï „ U = T  „ S - p „ V

Therefore, pressure is obtained from the ensemble average

p = [-
∑ H

`
ÅÅÅÅÅÅÅÅÅÅÅÅ
∑V

_êêêêêêêêêêêê

which can be expressed in the energy representation as
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p = - ‚
i

Pi 
∑ EiÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑V

For example, consider an ideal nonrelativistic gas within volume V = L3 .  Single-particle energy levels are then 
given by

¶n = n2 
Ñ2 p2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 mL2 where n2 = nx

2 + ny
2 + nz

2

Using the chain rule
∑¶nÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑V

=
∑¶nÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ L

 
∑ L
ÅÅÅÅÅÅÅÅÅÅÅ
∑V

and the derivatives
∑¶nÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ L

= -
2
ÅÅÅÅÅÅ
L

 ¶n
∑V
ÅÅÅÅÅÅÅÅÅÅÅ
∑ L

=
3
ÅÅÅÅÅÅ
L

 V

we immediately find that

p =
2
ÅÅÅÅÅ
3

 
U
ÅÅÅÅÅÅÅÅ
V

where U = N ¶êê  is the internal energy for an ideal gas with N  particles and mean single-particle energy ¶êê .  Therefore, the 
pressure exerted by an ideal gas upon its container is simply two-thirds of its energy density.  This result agrees with the 
thermodynamics of an ideal gas, as expected.  This statistical analysis reveals that the relationship between pressure and 
energy density is an elementary consequence of the scaling between single-particle energy and volume.  Thus, we obtain a 
familiar result using a dimensional argument which is somewhat simpler than kinetic theory and can easily apply similar 
arguments to other systems, such as the photon gas.

The adiabatic relationship between pressure and volume also follows immediately from this analysis.  The single-
particle energy levels for a classical ideal gas scale with L-2  or, equivalently, with V -2ê3 .  Thus pressure, which depends 
upon the derivative of E  with respect to V , scales with V -5ê3 .  Therefore, we find

¶ ∂ L-2 ∂ V -2ê3 ï U ∂ V -2ê3 ï p ∂ V -5ê3 ï pV 5ê3 = constant

for isentropic variations which do not change the probability distribution.

These derivations involve a subtlety which may have caught your attention.  If the system is prepared in an energy 
eigenstate, which is supposed to be stationary, how does a nontrivial probability distribution arise for which more than a 
single state is represented with nonvanishing probability?  To some extent the notion of a statistical ensemble evades this 
issue by stipulating the existence of a vast number of copies of the system which are macroscopically identical but which 
are prepared in microstates with frequency distribution Pi .  If there are no interactions between the systems and their 
environments, and each system is in a stationary state, the nontrivial probability distribution also remains stationary and the 
ensemble average is well defined.  However, it is a tenet of statistical mechanics that temporal averages for a particular 
system are equivalent to ensemble averages, which then requires that each system samples all states with probability Pi .  If 
the container could be maintained at absolute zero in a unique quantum state that does not exchange energy with the 
confined particles, the probability distribution for a single system prepared in a stationary state would in principle collapse 
about that single state.  However, because it is not possible to reach absolute zero, the container is maintained in equilib-
rium at some finite temperature with its own distribution of states.  Fluctuations in the state of the container couple to the 
state of the prisoner via interactions which can never be completely suppressed, giving rise through energy exchange to a 
distribution of states with finite width.
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à Heat and work

Consider a system with hamiltonian H
`

.  The thermodynamic energy is the ensemble average of the expectation 
value of this energy operator, such that 

U = XH` \ = ‚
i

Pi Ei

where Pi  is the frequency that state i with energy Ei  is represented in the ensemble.  If the external conditions are changed, 
the change in internal energy becomes

„ U = ‚
i

HPi „ Ei + Ei „ PiL
The first term, in which the energy levels are changed without altering the probability distribution, corresponds to adiather-
mal, isentropic work.  The second term, in which the probabilities are adjusted without changing the energy levels, must 
then correspond to heat transfer at constant volume.  Hence, we identify

dW = ‚
i

Pi „ Ei = - p „ V

dQ = ‚
i

Ei „ Pi = T  „ S

where the statistical interpretation of pressure developed in the preceding section has been used to perform the sum over 
states in the definition of work.  The identification of the second term with entropy then follows from the thermodynamic 
relationship T = H ∑UÅÅÅÅÅÅÅÅÅ∑S LV .  Recognizing that

„ S = -kB ‚
i

ln Pi „ Pi

we obtain the fundamental thermodynamic relation for a simple compressible system as „ U = T  „ S - p „ V  and interpret

„ S = -kB ‚
i

ln Pi „ Pi

p „ V = - ‚
i

Pi „ Ei

Therefore, work is associated with changes of the energies of microstates, whereas heat is associated with changes in the 
probabilities of microstates.

For example, consider a gas of noninteracting particles, each of which occupies some single-particle eigenstate of 
the box.  The probability that the entire system is found in some state of the N -body system can be expressed in terms of 
the probabilities for each particle that it is found in a particular single-particle eigenstate.  The diagram below illustrates, in 
a rather schematic fashion, the population of some of these single-particle states.  If we change the volume of the box 
quasistatically, the distribution of particles among eigenstates remains the same, but work is performed because the ener-
gies of the eigenstates are changed.  If we leave the volume of the box alone but shine light on the particles, some of the 
particles will absorb energy from the light and be promoted to higher energy levels.  Although the energy levels remain the 
same, the system absorbs heat because the population of levels with higher energy has been increased at the expense of the 
population of lower energy levels.  Thus, heat is associated with variation of the probability distribution.  If the probability 
of states of higher (lower) energy is increased, then heat is absorbed (expelled).  In the diagram below adiabatic compres-
sion is followed by heating at constant volume.
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Level Occupancy

start adiabatic compression add heat

Multiplicity functions

To apply the statistical postulate, we must determine the number of accessible microstates consistent with the 
external constraints upon the system of interest.  This number is known as the multiplicity and the dependence of multiplic-
ity upon external conditions (such as total energy, volume, and particle number) is governed by a multiplicity function.  
Hence, the central problem of statistical mechanics is the determination of the multiplicity function, or avoidance thereof, 
by application of theorems or methods based upon statistical reasoning.

Several measures of multiplicity are available.  Suppose for the moment that we can specify the energy E, volume 
V, and particle number N with infinite precision for an isolated system.  For macroscopic systems there will normally be a 
very large number of quantum states with precisely the same values of these external variables.  Hence, we say that the 
macrostate specified by HE, V , NL  contains many microstates and label this number W@E, V , ND .  The function W@E, V , ND  
can be very irregular because it reflects a spectrum of discrete states with various degeneracies that depend upon micro-
scopic details of the structure of the system.  A somewhat smoother measure of multiplicity, at least in a relative sense, is 
provided by

S@E, V , ND = ‚
E£§E

W@E£, V , ND
which is defined as the total number of states with energies E£ § E  at or below E.  However, since it is not possible, even 
in principle, to define energy with infinite precision, we are more interested in the number of states within a very small 
interval dE  centered upon E.  [Similar arguments can be made for V and N, but those dependencies will be suppressed for 
brevity.]  The energy resolution dE  should be large compared with the level spacing, so that it contains many microstates, 
but small compared with the rate of change of thermodynamic variables or with experimental precision.  Thus, dE  should 
be microscopically large but macroscopically small.  Therefore, we define

G@ED =
∑ S@ED
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∑ E
 dE = g@ED dE

as the multiplicity of microstates within an energy shell E ≤ 1ÅÅÅÅ2  dE .  Note that the dependence of  G  upon dE  remains 
implicit, but should not be forgotten.  For an appropriate choice of shell width dE , the function G@ED  should be sufficiently 
smooth for practical applications.  Similarly, the density of states

g@ED =
∑ S
ÅÅÅÅÅÅÅÅÅÅÅ
∑ E
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should be a smooth function of energy determined by a physical, rather than strictly mathematical, differentiation process 
involving finite, but quite small, rather than infinitesimal differences.

These considerations apply when the level density is large and smooth.  However, at very low temperatures details 
of the energy spectrum may become apparent when the thermal fluctuation energy kB T  becomes comparable to the level 
spacing.  Probably the most important example is the phenomenon of Bose condensation.  Under those circumstances we 
may need to return to W  instead of g and analyze the population of particular quantum states more explicitly.  However, 
because such details are not readily apparent for most of our applications, we now consider the properties of G  when the 
level density is large.

Suppose that a system has f degrees of freedom and let SiH¶L  be the total number of states for a degree of freedom i 
(i = 1, f ) which contributes energy ¶£ § ¶  to E.  For example, an ideal gas of N noninteracting structureless particles can 
be described by f = 3 N  momentum variables.  If ¶  is not too small, we expect Si ~ ¶ ê D¶  where D¶  is the average spacing 
between energy levels near ¶ .  Furthermore, we assume that the average contribution to the total energy is the same for all 
available degrees of freedom, so that ¶ ~ E ê f .  Hence, the total number of states below a specified energy is on the order 
of

S@ED ~ ikjjS1

ÄÇÅÅÅÅÅÅÅÅ E
ÅÅÅÅÅÅÅ
f

ÉÖÑÑÑÑÑÑÑÑy{zz f

while the number within shell dE  is about

G@ED =
∑S
ÅÅÅÅÅÅÅÅÅÅÅ
∑ E

 dE ~ f S1
f -1 

∑ S1ÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑¶

 
∑¶

ÅÅÅÅÅÅÅÅÅÅÅ
∑ E

 dE ~ S1
f -1 

∑S1ÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑¶

 dE

For very large f ~ 1024 , S1@E ê f D  varies slowly with E  while G  increases extremely rapidly with increasing E because f 
appears as an enormous exponent.  Nevertheless,

ln G@ED ~ f ln S1 + ln ikjj ∑ S1ÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑¶

 dEy{zz º f ln S1

is practically independent of dE  because the inequalities

f -1 `
∑S1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑¶

 dE ` f

render the logarithmic dependence upon dE  negligible.  Therefore, we conclude that

ln G ∂ f ln E ï G ∂ E f

and

ln G º ln W º ln S º ln g

independent of the choice of dE .

Evidently, it matters little which multiplicity function we choose to employ for the definition of entropy (or disor-
der) because

S = kB ln G º kB ln W º kB ln S º kB ln g

up to factors of order 1 + OH f -1L .  This fortuitous circumstance explains in part the success of statistical methods of 
thermodynamic analysis.  Furthermore, it is important to recognize that entropy, defined as the logarithm of multiplicity, is 
an extensive function because

f ∂ N ï S ∂ N ï S@E, V , ND = N sB E
ÅÅÅÅÅÅÅ
N

,
V
ÅÅÅÅÅÅÅ
N

F
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where EÅÅÅÅÅÅN  and VÅÅÅÅÅÅN  are intensive parameters.

It may at first seem surprising that ln S º ln g  for large N, but with N appearing as an exponent the overwhelming 
majority of states with energy less than or equal to E are actually found very near to E.  Classically this corresponds to the 
fact that the volume of an N-dimensional sphere is dominated by the region very close to the surface when N is large.

à Example: binary systems

Systems consisting of N particles which may each occupy only two states comprise the simplest class of statistical 
models but are nevertheless rich enough to illustrate many of the central principles of statistical physics.  More impor-
tantly, several systems of physical interest belong to this class.  For example, the magnetic properties of a crystal consisting 
of spin 1ÅÅÅÅ2  atoms can be analyzed using this model.  We assume that the atoms are confined to stationary sites on a crystal 
lattice and neglect thermal vibrations about these sites, concentrating upon the magnetic degrees of freedom only.  

Each atomic spin can point either along or against the external magnetic field.  If each spin has magnetic moment 
m , the net magnetic moment of the entire system is M = HNÆ - N∞L m , where NÆ  is the number of spin-up and N∞  is the 
number of spin-down atoms.  In the presence of a magnetic filed B , the energy of the spin system is 

U = -M
”÷÷÷÷

ÿ B
”÷÷÷

= -HNÆ - N∞L mB

where spin-up refers to the alignment along the applied field.

Since each of the N  states may independently occupy either of 2 states, the total number of states is 2N .  A list of 
these states can be constructed from the symbolic expansion of the N -fold product of the two possibilities for each spin, 
namely HÆ + ∞LN .  For example, if N = 4, we find the 16 microstates listed below.HÆ + ∞L4 = Æ Æ Æ Æ+ Æ Æ Æ ∞ + Æ Æ ∞ Æ + Æ ∞ Æ Æ + ∞ Æ Æ Æ + Æ Æ ∞ ∞

+ Æ ∞ Æ ∞ + Æ ∞ ∞ Æ + ∞ Æ Æ ∞ + ∞ Æ ∞ Æ + ∞ ∞ Æ Æ+ Æ ∞ ∞ ∞ + ∞ Æ ∞ ∞ + ∞ ∞ Æ ∞ + ∞ ∞ ∞ Æ + ∞ ∞ ∞ ∞

There is nothing intrinsically special about the choice of symbols being up or down arrows — we could just as well have 
two colors or two fruits or any other pair of distinct traits.  This type of analysis can also be extended to systems with 3 or 
more distinct single-particle states by using a polynomial in place of the binomial HÆ + ∞L .

Alternatively, each state of a binary system can be specified by a unique N -digit string of 1's and 0's, a binary code.  
For example, if we assign spin-up a code of 1 and spin-down a code of 0, all possible states of a 4-atom system are 
described by the following list of 24 = 16 configurations.

M = +4 m 1111
M = +2 m 1110 1101 1011 0111
M = 0 m 1100 1010 1001 0110 0101 0011
M = -2 m 1000 0100 0010 0001
M = -4 m 0000

When displayed in this format, the multiplicity profile resembles a parabolic function of the net magnetic moment.  Desig-
nating the degeneracy of an energy level with NÆ  magnetic moments aligned with the magnetic field and N∞ = HN - NÆL  
moments against B  as g@NÆ, ND , we find

g@4, 4D = 1 g@3, 4D = 4 g@2, 4D = 6 g@1, 4D = 4 g@0, 4D = 1

summing to a total of 16 microstates.  More generally, the degeneracy of an arbitrary state is given by the binomial 
coefficient

g@NÆ, ND =
ikjjj N

NÆ

y{zzz =
N !

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
NÆ ! HN - NÆL!

=
N !

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
NÆ ! N∞ !
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describing the number of ways in which NÆ  distinguishable objects can be selected from a total of N  distinguishable 
boxes.  

Suppose that the system of interest contains approximately 1 mole or NA = 6.022 µ 1023  independent spins, typical 
of macroscopic samples.  The total number of magnetic states available to such a system is then fantastically large, about 
2NA ~ 101023

.  A common method for impressing the reader with the magnitude of such a number is to estimate the length 
of typescript required to represent all of its digits.  To be a little more modern (though still dated), we'll estimate the length 
of magnetic tape required to carry a binary representation.  A high density tape can carry 6250 bits per inch (although most 
formats are actually considerably less efficient).  Therefore, 6 µ 1023  bits for a single state requires about 1010  inches or 
about 270 light years of tape.

Similarly, the number of states whose energy lies within some specified interval HE, E + dEL  is also very large, 
some appreciable fraction of the number quoted above.  For all practical (macroscopic) purposes, the differences between 
most of the states within this interval are negligible and, in the absence of compelling contrary information, we assume that 
each of those states may be found with equal probability, a priori.  Of course, the probability of any individual microstate 
is extremely small, being the reciprocal of the total number of states within the energy interval.  If interactions between 
neighboring spins causes spin-flips to occur every 10-12  seconds, a typical atomic time, approximately 1035  changes of 
state occur each second.  Even at this rate it is impossible to sample all possible microstates  — it would still take about 
101023

 seconds to sample all microstates because 1023 - 35 = 1023 .  Nevertheless, we easily sample enough states to 
perform a meaningful ensemble average because the overwhelming majority of states are macroscopically similar.  The 
numbers involved in the statistics of macroscopic systems simply boggle the imagination.

It is useful to define an alignment variable x  as the fractional asymmetry between spin-up and spin-down 
populations

x =
NÆ - N∞ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

N

such that

NÆ =
N
ÅÅÅÅÅÅÅ
2

 H1 + xL
N∞ =

N
ÅÅÅÅÅÅÅ
2

 H1 - xL
represent the populations of the two spin states and U = -x N m B = -x Umax  is the internal energy.  Assuming that N , NÆ , 
and N∞  are all large, we can use Stirling's formula to express the multiplicity function as

ln z! º z ln z - z ï ln g º N  J 1 + x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2
 LogB 2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + x

F +
1 - x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2
 LogB 2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 - x

F N
such that the entropy becomes

S = N kB J Umax - U
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 Umax
 LogB 2 UmaxÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

Umax - U
F +

Umax + U
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 Umax
 LogB 2 UmaxÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

Umax + U
F N

After some straightforward algebra, we find that the internal energy takes the form
1
ÅÅÅÅÅÅ
T

=
∑S

ÅÅÅÅÅÅÅÅÅÅÅÅ
∑U

ï U = -N m B tanhB m B
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
kB T

F
At high temperature the internal energy approaches zero and the spins are found with equal probability in either orienta-
tion, such that the entropy approaches its maximum possible value:

T Ø ¶ ï U Ø 0 ï S Ø N kB ln 2
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The same results can also be obtained using the definition of entropy in terms of probability.  Assuming that the 
atoms do not interact with each other, the orientation of each spin depends only upon temperature and the external mag-
netic field and is independent of the orientations of neighboring spins.  Therefore, the entropy SN = N S1  for N  statistically 
independent spins is simply N  times the entropy for a single spin, such that

S = N S1 = -kB ‚
s

P1@sD ln P1@sD
where for a binary system the summation includes spin-up and spin-down states of a single atom.  Probabilities for the two-
state problem can now be represented using an alignment variable x  defined by

PÆ =
1 + x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2
P∞ =

1 - x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2

so that we again find

S = N  J 1 + x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2
 LogB 2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + x

F +
1 - x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2
 LogB 2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 - x

F N
More thorough presentations of the thermodynamics of binary systems can be found in thermo2.nb and spin-half.nb.

à Example: confined systems

Consider the states available to a particle in a cube of volume L3 .  Imposing the boundary condition that the wave 
function vanishes at the walls, we find

y@x, y, zD ∂ sin@kx xD sin@ky yD sin@kz zD
where k j = n j pÅÅÅÅÅÅÅÅÅL for integer n j .  The single-particle energy levels are then

¶n =
n2 Ñ2 p2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 mL2 with n2 = nx

2 + ny
2 + nz

2

where Ñ = 1.0546 µ 10-34  J-s is Planck's constant.  Hence, the energy levels available to a particle confined to a box are 
described by a discrete spectrum of the form ¶n = n2 ¶0  where ¶0 = HÑ2 p2 ê 2 mL2L  is the basic quantum of energy for this 
system.  However, many of the energy levels are shared by different states and hence are degenerate.  For example, the 
energy level with n2 = 14 carries the 6 configurations Hnx, ny, nzL  = (1,2,3), (3,1,2), (2,3,1), (2,1,3), (3,2,1), and (1,3,2).

Suppose that the particle is an N2  molecule with mass m = 4.65 µ 10-26 kg and that the box has sides of length 
L = 1 m.  The basic energy unit is then ¶0 = 1.18 µ 10-42 J for this system.  Further suppose that our molecule is simply one 
member of a mole maintained at a temperature of 273 K.  The average energy per molecule is then 
¶êê = 3ÅÅÅÅ2  RT ê NA = 5.65 µ 10-21 J where R = 8.314J/K/mole is the molar gas constant.  Hence, Xn2\ = 4.79 µ 1021  is enor-
mous.  Since each of the three dimensions will have the same average excitation, we estimate that the average value for 
each quantum number is Xni\ º 4 µ 1010 .  The multiplicity for a system of NA  objects, each of whose single-particle energy 
levels has a large degeneracy, becomes fantastically large.  Fortunately, there are techniques which expedite the analysis of 
such large numbers.

Suppose that the system of interest occupies a finite volume but is not necessarily constrained to a definite volume.  
We may then imagine enclosing the system in a box that is so much larger than the actual system that periodic boundary 
conditions can be applied with negligible effect upon the wave functions of the constituents.  From the basic principles of 
quantum mechanics we know that the energy levels of the system are discrete even if the spacing is infinitesimally small by 
macroscopic standards.  Therefore, the energy levels available to any finite system can be enumerated, at least in principle.
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à Example: N distinguishable oscillators

Consider a system of N harmonic oscillators and assume that interactions between these oscillators can be 
neglected.  For example, electromagnetic radiation in a cavity or the vibrations of atoms about lattice sites in a crystal may 
be analyzed in terms of independent modes of oscillation.  Each individual oscillator has an energy spectrum ¶n = nÑw  
consisting of an infinite sequence of equally spaced levels where n is the total number of quanta and Ñw  is the fundamental 
quantum of energy for the system.  [The zero-point energy represents a trivial offset of the energy scale and can be 
omitted.]

For example, consider a single particle in a 3-dimensional harmonic well.  The total number of quanta is then 
n = nx + ny + nz  where each of the three spatial dimensions can be considered to be an independent oscillator.  The degener-
acy of each single-particle energy level is equal to the total number of ways that n quanta can be distributed among the 
three independent axes.  There are n + 1 possible values of nx  between 0 and n.  For each of these values, we can choose 
ny  to be anywhere between 0 and n - nx .  The number of quanta along the z-axis is then determined.  Hence, the degener-
acy of a single-particle level with n quanta is given by the sum

g@nD = ‚
nx=0

n Hn - nx + 1L = ‚
k=1

n+1

k =
1
ÅÅÅÅÅ
2

 Hn + 1L Hn + 2L
whose value can be demonstrated by induction.

The degeneracy for a system of many independent oscillators can now be obtained by extending this argument to f 
independent degrees of freedom, where f is the total number of oscillator modes rather than simply the total number of 
particles.  Let n represent the total number of quanta, so that the internal energy of the system is U = nÑw .  The degener-
acy is simply the number of distinct ways that n indistinguishable objects (quanta) can be distributed among f distinguish-
able boxes (vibrational modes).  Suppose that the boxes are represented by vertical lines marking their boundaries and that 
the objects are represented by circles, as sketched below for a particular configuration.

•• » •••• »» ••• » ••••• »» •
The outermost walls need not be included.  The number of combinations of n objects and f - 1 interior partitions is simply H f + n - 1L! .  However, because the n!  permutations of the balls or the H f - 1L!  permutations of the partitions among 
themselves leave the system invariant, the degeneracy is simply the binomial coefficient

g@n, f D = ikjjj f + n - 1
n

y{zzz =
H f + n - 1L!
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n! H f - 1L!

The earlier result for a single three-dimensional oscillator is recovered by choosing f Ø 3.

In the limit of large n and large f, we can employ Stirling's approximation to obtain

ln g º H f + nL ln@ f + nD - n ln n = f  H H1 + xL ln H1 + xL - x ln x L
where x = n ê f  is the average excitation per oscillator.  The entropy can now be expressed as

S = kB f H H1 + xL ln H1 + xL - x ln x L
where x = U ê f Ñw .  Evaluating the temperature, we find

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
kB T

=
∑ ln g
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∑U
ï f y =

∑ ln g
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∑ x
= f ln

1 + x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

x
ï x =

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
‰y - 1

where y = ÑwÅÅÅÅÅÅÅÅÅÅÅkB  T  is a dimensionless variable that represents the ratio between oscillator and thermal energies.  Therefore, we 
obtain the thermal equation of state

26 StatisticalPostulate.nb



U =
f Ñw

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
‰ÑwêkB  T - 1

and heat capacity
CVÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
f kB

=
y2 ‰y

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH‰y - 1L2 where y =
Ñw

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
kB T

It is useful to define a dimensionless reduced temperature as t = y-1 = kB T êÑw .  

Einstein's model of the heat capacity of a crystal containing N atoms in a lattice treated the 3 N  normal modes of 
vibration as independent harmonic oscillators with a single average frequency w .  If we define a characteristic temperature 
TE = Ñw ê kB , the reduced temperature becomes t = T ê TE .  The figure below displays the dependence of the heat capacity 
upon reduced temperature.  At high temperatures, t p 1, one finds the classical heat capacity CV Ø 3 N kB  expected for 
equipartition among 3 N  coordinates and 3 N  momenta.  However, at low temperatures, t < 1, the heat capacity is much 
smaller quantum mechanically than classically because the finite energy required to excite a quantized oscillator freezes out 
states that would participate in a classical theory permitting arbitrarily small excitations.  Although this model is simplistic, 
the explanation of reduced heat capacity at low temperature in terms of quantization of energy provided important support 
for the early quantum theory.
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Heat Capacity for Einstein Crystal

We will return to this and more refined models shortly.  Further information on these systems can be found in the 
notebooks hotherm.nb, debye.nb, and planck.nb.

Thermal interaction

Consider two isolated systems with multiplicity functions G1@E1D  and G2@E2D .  These functions depend upon details 
of internal structure and may be quite different for dissimilar systems, but we assume that each Gi@EiD  is a rapidly increas-
ing function of energy.  The composite multiplicity function for the combined system comprising the two noninteracting 
subsystems is then

G1,2
H0L @E1, E2D = G1@E1D G2@E2D
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Now suppose that these systems are brought into thermal contact with each other but that the combined system remains 
isolated.  If the initial energies are E1 i  and E2 i , the initial multiplicity is G1,2

HiL = G1@E1 iD G2@E2 iD .  As the two systems 
interact with each and exchange energy, the number of available microstates will also change as each system's share of the 
total energy changes.  Although these systems can exchange energy through their shared boundaries, we assume that there 
are no long-range macroscopic interactions between them so that the net energy E  for the combined system is very near 
E1 i + E2 i ; hence, we assume that E = E1 + E2  is simply additive.  During the thermal interaction, the macrostates for each 
subsystem change but are confined by the band E1 + E2 = E ≤ dE  where dE  is the energy resolution.  (We left dE  implicit 
in Gi .)  The total multiplicity is then

G@ED = ‚
k

G1@E1 kD G2@E - E1 kD º ‡ g1@E1D G2@E - E1D „ E1

where the summation includes all possible energy divisions between two subsystems.  Since each term is positive and the 
sum includes G1,2

HiL , clearly

G ¥ G1,2
HiL

where equality applies only in the rare circumstance that only a single macrostate (k = i ) is available.  Thus, thermal 
interaction must increase entropy as more microstates become available with the same total energy.  Furthermore, because 
G1@E1D  increases very rapidly as E1  increases while G2@E - E1D  decreases very rapidly as its share of the fixed total energy 
decreases, the product G1@E1D G2@E - E1D  is a very sharply peaked function of E1 .  Therefore, in equilibrium the combined 
system will be found with overwhelming probability very near the peak of G1,2@E1, E - E1D  characterized by most probable 
energies E

è
1  and E

è
2 , with E

è
1 + E

è
2 = E1 + E2 .  Since G1,2  is sharply peaked, the summation is dominated by the single 

greatest contribution G1@Eè 1D G2@E - E
è

1D .  Hence, maximizing ln G1,2  with respect to E1  is equivalent to maximizing ln G , 
whereby

∑
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ E1

 ln G1,2@E1, E - E1D = 0 ï
∑

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ E1

 ln G1@E1D =
∑

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ E2

 ln G2@E2D
This relationship is illustrated in the diagram below, which displays schematic multiplicity functions G1@E1D , 

G2@E - E1D , and G1,2@E1, E - E1D .  Note that to display all three functions together, we must multiply G1  and G2  by small 
factors gi  and must choose the energy range and axis scaling carefully because the multiplicity functions for macroscopic 
functions are incredibly steep.  The product of a rapidly falling and a rapidly increasing function is usually a sharply 
peaked function for which the position and width of the peak depends upon the two slopes.  Another useful way to visual-
ize the optimization of energy sharing is to display the product multiplicity function within the band permitted by the 
energy constraint as a density plot in which the shading indicates the number of available states.  The initial state will 
usually not be near the peak of the composite multiplicity function, but once the systems are permitted to exchange energy 
the combined system will move toward the most probable configuration and will soon be found with overwhelming 
probability within the peak of maximum entropy.
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Recognizing that thermodynamic equilibrium requires T1 = T2  and using the thermodynamic relationship 1ÅÅÅÅÅT = ∑SÅÅÅÅÅÅÅÅÅ∑U , 
we are led to the identification of

S = kB ln G

as the entropy.  Boltzmann's constant kB = 1.38066 µ 10-23 J kelvin-1  is chosen to produce agreement with the thermody-
namic temperature scale.  Thus, at equilibrium we find

G@ED º g1@Eè 1D G2@E - E
è

1D dE1 ï S = S1 + S2

where dE1  is the width of the sharp peak in G1,2@E1, E - E1D ; clearly ln dE1  is negligible for macroscopic systems.  There-
fore, entropy is an extensive variable, as required by thermodynamics, and 

S ¥ S1 i + S2 i
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where S1 i = kB ln G1 i  and S2 i = kB ln  G2 i  are the entropies of the two subsystems before interaction.  Thus, we have 
provided a statistical interpretation of the law of increasing entropy.

The change in entropy that results from an infinitesimal exchange of heat dQ = „ E1  between two systems in 
thermal contact via immovable and impenetrable walls which do not permit exchange of volume (work) or particles is 

„ S = „ S1 + „ S2 = kB 
∑ ln G1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∑ E1
 „ E1 + kB 

∑ ln G2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ E2

 „ E2

such that

„ S = J 1
ÅÅÅÅÅÅÅÅÅ
T1

-
1

ÅÅÅÅÅÅÅÅÅ
T2

N dQ

The statistical requirement of increasing disorder as the system evolves toward a macrostate with greater multiplicity of 
microstates is equivalent to the thermodynamic inequalities

„ S ¥ 0 ï dQ ¥ 0 when T1 § T2 or dQ § 0 when T1 ¥ T2

which require heat to flow spontaneously from warmer to colder systems.  Furthermore, we identify the thermodynamic 
internal energies Ui  with the equilibrium energies E

è
i  which maximize the net entropy.

More generally, suppose that two interacting systems can exchange energy, volume, and particles through a 
flexible, permeable, diathermal boundary.  Once again assume that G  is sharply peaked about 
G1@Eè 1, V1

è
, N

è
1D G2@Eè 2, V2

è
, N

è
2D  where E

è
i , V

è
i , and N

è
i  are the most probable values for the energy, volume, and particle 

number for each subsystem subject to the constraints E
è

1 + E
è

2 = E ≤ dE ,  V
è

1 + V
è

2 = V ≤ dV , and  N
è

1 + N
è

2 = N ≤ dN .  
Thus, maximization of ln G  with respect to independent variations of E1 , V1 , and N1  is equivalent to maximizing ln G1,2  
and results in the equilibrium conditions

∑ ln G1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ E1

=
∑ ln G2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∑ E2
∑ ln G1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∑V1
=

∑ ln G2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑V2

∑ ln G1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ N1

=
∑ ln G2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∑ N2

specifying the most probable macrostate.  Correspondence with the fundamental relation of thermodynamics, 
T  „ S = „ U + p „ V - m „ N  is then achieved by means of the identifications

1
ÅÅÅÅÅÅ
T

= ikjj ∑S
ÅÅÅÅÅÅÅÅÅÅÅÅ
∑U

y{zzV ,N
ó b = ikjj ∑ ln G

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ E

y{zzV ,N
p

ÅÅÅÅÅÅ
T

= ikjj ∑S
ÅÅÅÅÅÅÅÅÅÅÅ
∑V

y{zzU ,N
ó b p = ikjj ∑ ln G

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑V

y{zzE,N
m
ÅÅÅÅÅÅ
T

= -ikjj ∑S
ÅÅÅÅÅÅÅÅÅÅÅÅ
∑U

y{zzV ,N
ó b m = - ikjj ∑ ln G

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ N

y{zzE,V

where S = kB ln G  is entropy, T temperature, p pressure, and m chemical potential and where it is convenient to define 
b = HkB TL-1 .  Equilibrium then requires

T1 = T2 p1 = p2 m1 = m2

for the final, most probable, macrostate with Ui º E
è

i , Vi º V
è

i , and Ni º N
è

i .  Therefore, an intensive parameter determines 
the equilibrium distribution of a conserved quantity between interacting subsystems.  Note that the equalities between the 
extensive variables HU , V , NL  and their most probable values are to be interpreted in a thermodynamic sense, which 
requires these quantities to be found with overwhelming probability within very narrow ranges centered upon their most 
probable (equilibrium) values.
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Fluctuations

The widths of the distributions for the thermodynamic variables can be deduced from a Gaussian approximation to 
G .  For simplicity, consider only the dependence upon energy.  Suppose that two systems are in thermal contact with each 
other but that the composite system is thermally isolated.  The two systems share the net total energy, such that 
E = E1 + E2 .  Near equilibrium we can expand the logarithm of the composite multiplicity function about its peak, for 
which the subsystem energies are near their most probable values, E

è
1  and E

è
2  with E

è
1 + E

è
2 = E .  Hence, we write

ln G1,2@E1D º ln G1,2@Eè 1D +
1
ÅÅÅÅÅ
2

 
ikjjj ∑2 ln G1,2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ E1

2
y{zzzE1=E

è
1

 HE1 - E
è

1L2
+ ∫

where G1,2@Eè 1D = G1@Eè 1D G2@E - E
è

1D , such that

G1,2@E1D º G1,2@Eè 1D Exp
ÄÇÅÅÅÅÅÅÅÅÅÅÅ-

HE1 - E
è

1L2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2

ÉÖÑÑÑÑÑÑÑÑÑÑÑ
We can now identify

s-2 = -
ikjjj ∑2 ln G1,2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ E1

2
y{zzzE1=Eè 1

= -
ikjjj ∑2 ln G1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∑ E1
2 +

∑2 ln G2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ E2

2
y{zzzE1=Eè 1,E2=Eè 2

as the energy variance for the composite system.  It is useful to identify the individual contributions as

si
-2 = -

∑2 ln GiÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑Ui

2 = -
1

ÅÅÅÅÅÅÅÅÅ
kB

 
∑2 SiÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑Ui

2 = HkB T2 CiL-1

where Ci  is the appropriate (here, isochoric) heat capacity for system i.  Thus, the mean energy fluctuations for two 
interacting systems are related to those for each individual system by

1
ÅÅÅÅÅÅÅÅÅÅ
s2 =

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
s12 +

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
s22

such that

s2 = kB T2 C1 C2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
C1 + C2

If one system is very much smaller than the other, the smaller system dominates the energy width, such that

C2 p C1 ï s2 º kB T2 C1 J1 -
C1ÅÅÅÅÅÅÅÅÅÅ
C2

N
Hence, the average energy is very near the most probable energy, and our other approximations are valid also, if

s
ÅÅÅÅÅÅÅÅ
U

` 1 ï kB T2 CV p U2

where CV  is associated with the smaller subsystem.  For example, if our system is a classical ideal gas, we find
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U =
3
ÅÅÅÅÅ
2

 NkB T ï s = J 3
ÅÅÅÅÅ
2

 NN1ê2
 kB T ï

s
ÅÅÅÅÅÅÅÅ
U

= J 3
ÅÅÅÅÅ
2

 NN-1ê2
such that sÅÅÅÅÅÅU ` 1for large N.  Thus, if N ~ 1024 , the relative width of the energy distribution is about 10-12  and it is 
extremely unlikely that the system can be found with an energy differing from its most probable value by more that one 
part in 1011 .  Therefore, the energy distribution is extremely sharp in a macroscropic sense and the thermodynamic energy 
is extremely close to the most probable energy despite the rapid changes in the microstate of the system because there are a 
vast number of states within an extremely narrow band about the most probable energy.

For each subsystem, the root-mean-square (rms) energy fluctuation

si@UiD = HkB T2 CiL1ê2
is proportional to temperature and to the square-root of its heat capacity.  Recognizing that the heat capacity is proportional 
to the size of a system, it is useful to express the heat capacities as Ci = mi ci  where mi  is the mass and ci  the specific heat 
for system i, such that

si@UiD = HkB T2 mi ciL1ê2
ï s2 = kB T2 m1 c1 m2 c2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

m1 c1 + m2 c2

Suppose that the two systems have similar composition but different sizes, such that

c1 º c2 ï s2 = kB T2 m1 m2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
m1 + m2

Similar analyses can also be performed for fluctuations of volume, particle number, or other variables.  For example, one 
finds that fluctuations of volume are governed by the compressibility of the system.

This argument can be generalized to include any extensive quantity that can be exchanged between a system and a 
much larger reservoir.  Variations of the total entropy for two interacting systems can be expressed in the form

„ S = „ S1 + „ S2 = „ S1 +
∑S2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ E2

 „ E2 +
∑S2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑V2

 „ V2 + ∫

where the variation in the contribution „ S2  of the reservoir is expanded in terms of its extensive variables; here we limit 
the expansion to two terms, for simplicity, but others can be included easily.  Using

E = E1 + E2 ï „ E2 = -„ E1
V = V1 + V2 ï „ V2 = -„ V1

for the conserved extensive quantities and identifying the intensive variables
∑S2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ E2

=
1

ÅÅÅÅÅÅÅÅÅ
T2

∑S2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑V2

=
p2ÅÅÅÅÅÅÅÅÅ
T2

we find

„ S = „ S1 -
„ E1 + p2 „ V1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

T2

Assume that system 2 is a large reservoir and the system 1 is a much smaller subsystem.  The temperature and pressure of 
the reservoir are constant for all practical purposes, unaffected by changes is the energy or volume of the much smaller 
subsystem.  Thus, the entropy change for a small but finite fluctuation of the extensive variables for the subsystem takes 
the form

DS =
T2 DS1 - DE1 - p2DV1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

T2
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The probability for such a fluctuation is then

P ∂ ExpB T2DS1 - DE1 - p2 DV1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
kB T2

F
Focusing our attention upon the smaller subsystem, it is convenient to identify T = T2  and p = p2  and to omit the subscript 
for the subsystem, such that 

P ∂ ExpB T DS - DE - pDV
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

kB T
F

Next expand the variation of energy about its most probable value, such that

DE º
∑ E
ÅÅÅÅÅÅÅÅÅÅÅ
∑S

 DS +
∑ E
ÅÅÅÅÅÅÅÅÅÅÅ
∑V

 DV +
1
ÅÅÅÅÅ
2

 
ikjjj ∑2 E

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑S2  HDSL2 + 2 ikjjj ∑2 E

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑V  ∑S

y{zzz DV DS +
∑2 E
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑V 2  HDV L2y{zzz + ∫

and identify
∑ E
ÅÅÅÅÅÅÅÅÅÅÅ
∑S

= T
∑ E
ÅÅÅÅÅÅÅÅÅÅÅ
∑V

= -
p

ÅÅÅÅÅÅ
T

to obtain a Gaussian probability distribution 

P ∂ Exp
ÄÇÅÅÅÅÅÅÅÅÅ- b 

1
ÅÅÅÅÅ
2

 
ikjjj ∑2 E

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑S2  HDSL2 + 2 ikjjj ∑2 E

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑V  ∑S

y{zzz DV DS +
∑2 E
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑V 2  HDV L2y{zzz ÉÖÑÑÑÑÑÑÑÑÑ

governing entropy and volume fluctuations in the subsystem.  Notice that the first-order variations are eliminated by the 
equilibrium conditions that require the temperature and pressure of the most probable state of the subsystem to be equal to 
those of the reservoir.  Using

DT DS = ikjj ∑T
ÅÅÅÅÅÅÅÅÅÅÅ
∑S

 DS +
∑T
ÅÅÅÅÅÅÅÅÅÅÅ
∑V

 DVy{zz DS

D p DV = ikjj ∑ p
ÅÅÅÅÅÅÅÅÅÅÅ
∑S

 DS +
∑ p
ÅÅÅÅÅÅÅÅÅÅÅ
∑V

 DVy{zz DV

and the Maxwell relationikjj ∑ p
ÅÅÅÅÅÅÅÅÅÅÅ
∑S

y{zzV
= -ikjj ∑T

ÅÅÅÅÅÅÅÅÅÅÅ
∑V

y{zzS

we observe

DT DS - D p DV =
∑2 E
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑S2  HDSL2 + 2 ikjjj ∑2 E

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑V  ∑S

y{zzz DV DS +
∑2 E
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑V 2  HDV L2

and express the probability distribution for fluctuations in the form

P ∂ ExpB-
DT DS - D p DV
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 kB T
F

where two of the variables are considered independent and the other two dependent.

In the absence of an entropy meter, it is useful to expand the entropy fluctuation

DS = ikjj ∑S
ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzV
 DT + ikjj ∑S

ÅÅÅÅÅÅÅÅÅÅÅ
∑V

y{zzT
 DV =

CVÅÅÅÅÅÅÅÅÅÅÅ
T

 DT + ikjj ∑ p
ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzV
 DV

in terms of temperature and volume and use the the equation of state for pressure fluctuations
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D p = ikjj ∑ p
ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzV
 DT + ikjj ∑ p

ÅÅÅÅÅÅÅÅÅÅÅ
∑V

y{zzT
 DV = ikjj ∑ p

ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzV
 DT -

DV
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
V kT

such that

DT DS - D p DV =
CVÅÅÅÅÅÅÅÅÅÅÅ
T

 HDTL2 +
HDV L2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
V kT

The probability distribution for fluctuations

P ∂ Exp
ÄÇÅÅÅÅÅÅÅÅÅ -

CVÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
kB T2  

HDTL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2

ÉÖÑÑÑÑÑÑÑÑÑ Exp
ÄÇÅÅÅÅÅÅÅÅÅ-

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
kB T V kT

 
HDV L2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2

ÉÖÑÑÑÑÑÑÑÑÑ
factors into two Gaussians.  Therefore, we conclude that temperature and volume fluctuations are statistically independent 
and can identify the variances for these fluctuations XHDTL2\ =

kB T2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

CV
XHDV L2\ = kB T V kT XDT DV\ = 0

by inspection.  When analyzing local fluctuations of density, it is more natural to employ a subsystem with fixed volume 
and variable particle number that fixed particle number and variable volume — the local subsystem is fixed in space with 
imaginary walls that permit free passage of particles in or out as the density changes.  The fluctuation in density, · = N êV , 
is obtained using

· =
N
ÅÅÅÅÅÅÅ
V

ï D· = -
·

ÅÅÅÅÅÅÅ
V

 DV ï XHD·L2\ =
·2

ÅÅÅÅÅÅÅÅÅÅ
V 2  XHDV L2\

such thatXHD·L2\ =
·2
ÅÅÅÅÅÅÅÅ
V

 kB T kT

is proportional to the isothermal compressibility.  

For a simple ideal gas we obtain

ideal gas ï XHDTL2\ =
2 T2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
3 N

, XHDV L2\ =
V 2
ÅÅÅÅÅÅÅÅÅÅ
N

, XHD·L2\ =
·2
ÅÅÅÅÅÅÅÅ
N

Thus, for an intensive variable, like T  or · , the variance is inversely proportional to N  while for an extensive variable, like 
V , the variance is directly proportional to N .  Nevertheless, the relative fluctuations  in both extensive and intensive 
variables 

ideal gas ï
XHDTL2\1ê2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

T
= $%%%%%%2

ÅÅÅÅÅ
3

N-1ê2 ,
XHDV L2\1ê2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

V
= N-1ê2 ,

XHD·L2\1ê2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

·
= N-1ê2

scale with N-1ê2  and are usually very small for macroscopic subsystems except near a phase transition where one or more 
of the relevant response functions might diverge.
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Problems

ô Canonical density operator for spin 1ÄÄÄÄ2

The hamiltonian for a spin 1ÅÅÅÅ2  magnetic dipole moment m  in a magnetic field B
”÷÷

= B z̀  is H = -mBsz .  The density 
operator for the canonical ensemble is r ∂ ‰- bH .

a) Evaluate the normalized density matrix in the basis which diagonalizes sz  and evaluate the expectation value of 
s”÷÷ .

b) Express r  in the basis which diagonalizes sx  and re-evaluate Xs”÷÷ \ .

ô Canonical density matrix for free particle

In the momentum representation matrix elements of the hamiltonian for a nonrelativistic free particle take the formYk”÷ £ » H`  » k
”÷ ] = ¶@kD dAk”÷ , k

”÷ £E
where

¶@kD =
Ñ2 k2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 m

is the kinetic energy.  Wave functions with periodic boundary conditions areXr” » k”÷ \ = V -1ê2 ‰Â k
”÷

ÿr”
where V  is the volume of a cube and the momentum eigenvalues are

k
”÷

= 8nx, ny, nz< 2 p
ÅÅÅÅÅÅÅÅÅÅÅ
L

where the quantum numbers 8nx, ny, nz<  are integers.  Assume that the box is sufficiently large to replace summation 
over discrete momenta by three-dimensional integration according to„

nx,ny,nz

ö V  ‡ „3 k
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH2 pL3

a) Evaluate the canonical density matrix r̀ = ‰- b H
`

 in the momentum representation and compute the partition 
function Z = Tr@r̀D .

b) Evaluate the mean single-particle energy.
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c) Express the density matrix in the position representation; in other words, evaluate Xr”£ » r̀ » r”\ .  Provide an intuitive 
interpretation of the off-diagonal matrix elements.

ô Disorder summed over bands

Suppose that an ensemble consists of many identical systems and that the states available to each system can be 
divided into a sequence of bands where each band contains gi  equally likely states with energy ¶i .  Let pi  be the 
probability that a system is found in some state within band i.

a) Find a general expression for the disorder of this ensemble in terms of gi  and pi .  It is crucial to remember that 
disorder sums over states, not levels, so that the degeneracy of each level must be considered carefully.

b) Evaluate the disorder assuming that the lowest band dominates the ensemble, such that p1 º 1.

c) Evaluate the disorder assuming that each state with energy ¶ § ¶max  is equally likely, such that the probability that 
the system is found within one of its accessible bands reduces pi ∂ gi .

ô Living at the edge

We argued that the entropy for large systems can be evaluated using several definitions of the multiplicity functions 
that appear at first glance to be rather different but which give practically identical thermodynamics because

ln G º ln W º ln S º ln g

if N is large enough.  There is a simple geometric interpretation of this result.  Each degree of freedom can be 
represented by a variable 8xi, i = 1, N<  and the states of the system by points in an N-dimensional vector space.  If 
each variable is scaled so that the energies contributed by a particular value R of a coordinate are the same, the total 
number of states is proportional to the volume of an N-dimensional sphere of radius R.  It is convenient to express R  
in terms of the average spacing between energy levels such that R  is a large pure number and the volume of the 
sphere represents the total number of states with energy E § R .  The volume of an N-sphere is represented by the 
integral

VN@RD = ‡ „ VN  Q

ÄÇÅÅÅÅÅÅÅÅÅÅÅ R2 - ‚
i=1

N

xi
2
ÉÖÑÑÑÑÑÑÑÑÑÑÑ

where Q@zD  is the truth function, taking the values 1 if z > 0 or 0 if z < 0, and where  

„ VN = ‰
i=1

N

„ xi

is the differential volume element.  For large N the volume of a spherical shell of thickness dR  is almost equal to the 
volume of the entire sphere provided that dR  is not infinitesimal.  In fact, the volume of the sphere is approximately 
equal to the volume of a shell, which is practically equal to the area of the sphere.

a) The volume of an N-dimensional sphere can be evaluated using a trick based upon the integral‡
-¶

¶

‰-x2
 „ x = p1ê2 ï ‡

-¶

¶

‰-r2
 „ VN = pNê2
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where r2 = ⁄i=1
N xi

2  and where each Cartesian integral extends over -¶ < xi < ¶ .  By converting from Cartesian to 
spherical coordinates, demonstrate the volume of an N-dimensional sphere can be express as VN = CN  RN  and 
determine CN .  Demonstrate that the expected values are obtained for N § 3.

b) Compute the area of an N-dimensional sphere and the volume of a spherical shell at its surface.  Compare the 
logarithms of these quantities for large N.

ô Generating function for degeneracy of oscillator system

Demonstrate that the number of ways g@n, f D  in which n  quanta can be distributed among f  degrees of freedom is 
given by the coefficient of tn  in the power-series expansion of the generating functionJ 1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 - t

N f
= ‚

n
g@n, f D tn

and thereby obtain an explicit expression for degeneracy of the f-oscillator energy level with a total of n quanta.

ô Solid binary mixture

Suppose that a solid mixture is created by melting two pure crystals, one composed of atoms of type A and the other 
type B, mixing the two liquids, and cooling the mixture until it solidifies.  If the concentrations of A and B atoms are 
uniform throughout the resulting solid, the mixture is described as homogeneous.  Often, however, this process 
produces a heterogeneous mixture composed of many small, nearly pure crystallites mixed together.  The outcome 
depends upon competition between the energy and the entropy of mixing.  A simple model for the homogeneous 
mixture supposes that a crystal lattice is to be populated by NA = x N  atoms of type A and NB = H1 - xL N  atoms of 
type B to form a binary alloy Ax B1-x .  Let fi@TD  represent the free energy per particle due to vibrations for atoms of 
type i œ 8A, B< .  Here we focus upon the entropy of mixing and assume that fi@TD  is independent of x  and density. 

a) Develop a simple expression for the mixing entropy S@xD  assuming that NA  and NB  are large.  [Hint: what are the 
probabilities that a site is occupied by an atom of type A or type B?]

b) Find an expression DF = F@xD - NA fA - NB fB  that compares the free energy F@xD  for the alloy with the free 
energies for pure crystals of each type assuming that the interactions between neighboring atoms are independent of 
type.  Is it more favorable for this system to form a homogeneous or a heterogenous mixture?

c) Suppose that the interaction energy between unlike atoms is much less attractive than the interaction between two 
like atoms.  Under these conditions one expects the system to separate into nearly pure phases.  It is useful to define 
D¶ = ¶AB - ¶BB  where D¶ p kB T .  Express the equilibrium concentration of impurity A atoms in a B crystal in 
terms of D¶  and T .
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ô Does equal temperature imply equal energy per particle?

Consider two different Einstein crystals, with Ni  elements and vibrational quanta ¶i  for i = 1, 2.  If the two crystals 
are brought into thermal contact, the equilibrium condition would be

∑S@U1,N1DÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∑U1
= ∑S@U2,N2DÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∑U2

= 1ÅÅÅÅÅT

Determine the energy per oscillator for each system.  Do you agree with the common assertion that "equal 
temperature implies equal energy per particle"?  Under what conditions is that true?  Investigate the ratio HU1 ê N1L ê HU2 ê N2L  in both high and low temperature limits.

ô Smallest meaningful temperature difference

Temperature equalization by energy exchange between systems in thermal contact is a probabilistic concept.  Hence, 
it is of interest to determine the minimum temperature difference, DTmin , for which energy exchange is 
overwhelmingly probable, which is then the smallest meaningful temperature difference between those systems.  
Consider two identical Einstein crystals, with N oscillators each and characteristic temperature TE , at initial 
temperatures Ti = T µ H1 ≤ dL .  For simplicity, consider only the high temperature limit T p TE  and assume that 
d ` 1.

a) Evaluate the entropy increase, DS = S@2 N , TD - S1@N , T1D - S2@N , T2D , due to equilibration of the two crystals.

b) Assuming that N = 1024 , determine the factor by which the number of available states increases due to 
equilibration.

c) Estimate the smallest meaningful temperature difference, DTmin , for systems of this type.

ô Properties of statistically normal systems

According to thermodynamics, entropy should be an extensive state function.  Furthermore, normal systems are 
confined to positive temperatures, which requires entropy to be a monotonically increasing function of energy:

T > 0 ï
∑S
ÅÅÅÅÅÅÅÅÅÅÅ
∑ E

> 0

Finally, the internal energy is normally a monotonically increasing function of temperature:

CV ¥ 0 ï ikjj ∑ E
ÅÅÅÅÅÅÅÅÅÅÅ
∑T

y{zzV
¥ 0

Therefore, the multiplicity function for a statistically normal system must satisfy several general requirements.  

a) Demonstrate that extensivity requires the multiplicity function to take the form

W@E, V , ND ~ ExpB N fB E
ÅÅÅÅÅÅÅ
N

,
V
ÅÅÅÅÅÅÅ
N

F F ï S ~ N kB fB E
ÅÅÅÅÅÅÅ
N

,
V
ÅÅÅÅÅÅÅ
N

F
where f = f@e, nD  is a positive-definite function of the energy and volume per particle.  
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b) Next demonstrate that positive temperature and heat capacity require f  to be a convex function of the energy per 
particle with positive first derivative and negative second derivative with respect to e .

c) What requirements must the density dependence of f  satisfy to ensure mechanical stability?

ô Correlations between entropy, temperature, volume, and pressure fluctuations

Use the T , V  covariance matrixXHDTL2\ =
kB T2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

CV
XHDV L2\ = kB T V kT XDT DV\ = 0

to deduce the following thermodynamic covariances:

i) XD T DS\ ii) XD p DV\ iii) XDS DV \ iv) XD p DT\
Express your results in terms of CV , a, kT .

ô Statistical independence of entropy and pressure

In the text we showed that temperature and volume were statistically independent by demonstrating

DT DS - D p DV =
CVÅÅÅÅÅÅÅÅÅÅÅ
T

 HDTL2 +
HDV L2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
V kT

ï XDT DV \ = 0

a) Show that entropy and pressure are statistically independent by demonstrating

DT DS - D p DV =
T

ÅÅÅÅÅÅÅÅÅÅ
Cp

 HDSL2 + V kS  HD pL2

and deducing XHDSL2\ , XHD pL2\ , and XDS D p\ .

b) Alternatively, expand DS  and D p  in terms and DT  and DV  and useXHDTL2\ =
kB T2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

CV
XHDV L2\ = kB T V kT XDT DV\ = 0

to obtain the same results.

ô Covariance between energy and volume

Expand DE  in terms of DT  and DV  and useXHDTL2\ =
kB T2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

CV
XHDV L2\ = kB T V kT XDT DV\ = 0

to evaluate XHDEL2\  and XDE DV \  for a subsystem with fixed N  in thermal and mechanical contact with a much 
larger reservoir of energy and volume.  Express your results in terms of CV , a, and kT .  Provide a qualitative 
interpretation for these results.
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ô Convexity of entropy

According to the maximum entropy principle, entropy must be convex function such that any small variation of the 
independent variables from their equilibrium values would reduce the entropy of an isolated system.  Thus, we might 
have expected the probability distribution for fluctuations to be expressed in the form

P ∂ Exp
ÄÇÅÅÅÅÅÅÅÅÅ-

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 kB

 
ikjjj ∑2 S

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑U2  HDEL2 + 2 

∑2 S
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑U  ∑V

 DE DV +
∑2 S

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑V 2  HDV L2y{zzzÉÖÑÑÑÑÑÑÑÑÑ

but in the text we used

P ∂ Exp
ÄÇÅÅÅÅÅÅÅÅÅ- b 

1
ÅÅÅÅÅ
2

 
ikjjj ∑2 U

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑S2  HDSL2 + 2

ikjjj ∑2 U
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑V  ∑S

y{zzz DV DS +
∑2 U
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑V 2  HDV L2y{zzz ÉÖÑÑÑÑÑÑÑÑÑ

Although the former is more intuitive, the latter is equivalent and the thermodynamic manipulations required to 
simplify the results are much easier.  Neverthless, it can be instructive to repeat the analysis using the DE, DV  
expansion.

a) By expanding DS1  instead of DE1 , show that the probability distribution for fluctuations of the energy and 
volume of a subsystem in thermal and mechanical contact with a much larger reservoir of energy and volume takes 
the form

P ∂ Exp
ÄÇÅÅÅÅÅÅÅÅÅ-

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 kB

 
ikjjj ∑2 S

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑U2  HDEL2 + 2 

∑2 S
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑U  ∑V

 DE DV +
∑2 S

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑V 2  HDV L2y{zzzÉÖÑÑÑÑÑÑÑÑÑ

where subscripts have been dropped and where the derivatives are evaluated at the state of maximum entropy 
(equilibrium).

b) Demonstrate that‡
-¶

¶‡
-¶

¶

ExpB-
1
ÅÅÅÅÅ
2

 Ha x2 + 2 b x y + c y2LF „ x „ y =
2 p

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!!!!a c - b2

and deduce the covariance matrix for a generic two-dimensional Gaussian probability distribution of the form 
P@x, yD ∂ Exp@- 1ÅÅÅÅ2  H a HDxL2 + 2 b Dx D y + c HD yL2 LD  where Dx = x - xêê  and D y = y - yêê  are deviations with respect 
to mean values.

c) It is useful to expand S  around its extremum in terms of the curvature matrix a  such that

ai, j =
ikjjj ∑2 S

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ xi ∑ x j

y{zzzxêê
ï S º S0 +

1
ÅÅÅÅÅ
2

 ‚
i, j

ai, j Dxi Dx j

where S0  is the equilibium value, x = 8xi<  is a vector of independent variables, xêê = 8xêêi<  is evaluated at the maximum 
S , and Dxi = xi - xêêi  is a displacement with respect to an equilibrium value.  Determine the relationship between the 
curvature matrix a  and the covariance matrix s  where

si, j = XDxi Dx j\
What conditions must a  satisfy?
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d) For the present application it is convenient to employ variables defined as f = 1 ê T  and g = p ê T  and to use the 
Jacobian ∑ 8U , V < ê ∑8 f , g<  to express s  in terms of familiar thermodynamic response functions.  Use this method to 
evaluate XHDEL2\ , XHDV L2\ , and XDE DV \ .
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