Statistical Mechanic

Third Editio

R. K. Pathr

Department of Phys University of California at San Die

Paul D. Bea

Department of Phys University of Colorado at Boule

ELSEVIED

Contents

	Pret	race to	the Inira Edition	XIII			
	Preface to the Second Edition						
Preface to the First Edition							
Historical Introduction							
	1.	The Statistical Basis of Thermodynamics					
1.1.			The macroscopic and the microscopic states				
		1.2.	Contact between statistics and thermodynamics: physical significance of the number $\Omega(N, V, E)$	3			
		1.3.	Further contact between statistics and thermodynamics	6			
		1.4.	The classical ideal gas	9			
		1.5.	The entropy of mixing and the Gibbs paradox	16			
		1.6.	The "correct" enumeration of the microstates	20			
			Problems	22			
	2.	Eleme	ents of Ensemble Theory	25			
		2.1.	Phase space of a classical system	25			
		2.2.	Liouville's theorem and its consequences	27			
		2.3.	The microcanonical ensemble	30			
		2.4.	Examples	32			
		2.5.	Quantum states and the phase space	35			
			Problems	37			

3.	The C	anonical Ensemble	39		5.3.	Examples	122
	3.1.	Equilibrium between a system and a heat reservoir	40		5.4.	Systems composed of indistinguishable particles	128
	3.2.	A system in the canonical ensemble	41		5.5.	The density matrix and the partition function of a	
	3.3.	Physical significance of the various statistical quantities				system of free particles	133
		in the canonical ensemble	50			Problems	139
	3.4.	Alternative expressions for the partition function	52		The T	haam, of Simple Coses	1.11
	3.5.	The classical systems	54	6.		heory of Simple Gases	141
	3.6.	Energy fluctuations in the canonical ensemble: correspondence with the microcanonical ensemble	58			An ideal gas in a quantum-mechanical microcanonical ensemble	141
	3.7.	Two theorems — the "equipartition" and the "virial"	61		6.2.	An ideal gas in other quantum-mechanical ensembles	146
	3.8.	A system of harmonic oscillators	65		6.3.	Statistics of the occupation numbers	149
	3.9.	The statistics of paramagnetism	70		6.4.	Kinetic considerations	152
	3.10.	Thermodynamics of magnetic systems: negative temperatures	77		6.5.	Gaseous systems composed of molecules with internal motion	155
		Problems	83		6.6.	Chemical equilibrium	170
	- 1 0	16 . 15 . 11	0.4			Problems	173
4.		rand Canonical Ensemble	91	_			4=0
	4.1.	Equilibrium between a system and a particle-energy reservoir	91	7.		Bose Systems Thermodynamic behavior of an ideal Bose gas	179 180
	4.2.	A system in the grand canonical ensemble	93		7.2.	Bose–Einstein condensation in ultracold atomic gases	191
	4.3.	Physical significance of the various statistical quantities	95		7.3.	Thermodynamics of the blackbody radiation	200
	4.4.	Examples	98		7.4.	The field of sound waves	205
	4.5.	Density and energy fluctuations in the grand canonical			7.5.	Inertial density of the sound field	212
		ensemble: correspondence with other ensembles	103		7.6.	Elementary excitations in liquid helium II	215
	4.6.	Thermodynamic phase diagrams	105			Problems	223
	4.7.	Phase equilibrium and the Clausius–Clapeyron equation	109				
		Problems	111	8.	Ideal	Fermi Systems	231
5.	Form	ulation of Quantum Statistics	115		8.1.	Thermodynamic behavior of an ideal Fermi gas	231
	5.1.	Quantum-mechanical ensemble theory:			8.2.	Magnetic behavior of an ideal Fermi gas	238
		the density matrix	115		8.3.	The electron gas in metals	247
	5.2.	Statistics of the various ensembles	119		8.4.	Ultracold atomic Fermi gases	258

	8.5.	Statistical equilibrium of white dwarf stars	259		11.3.	Low-lying states of an imperfect Bose gas	361
	8.6.	Statistical model of the atom	264		11.4.	Energy spectrum of a Bose liquid	366
		Problems	269		11.5.	States with quantized circulation	370
9.	Thern	nodynamics of the Early Universe	275		11.6.	Quantized vortex rings and the breakdown of superfluidity	376
	9.1.	Observational evidence of the Big Bang	275		11.7.	Low-lying states of an imperfect Fermi gas	379
	9.2.	Evolution of the temperature of the universe	280		11.8.	Energy spectrum of a Fermi liquid: Landau's	
	9.3.	Relativistic electrons, positrons, and neutrinos	282			phenomenological theory	385
	9.4.	Neutron fraction	285		11.9.	Condensation in Fermi systems	392
	9.5.	Annihilation of the positrons and electrons	287			Problems	394
	9.6.	Neutrino temperature	289	12.	Phase	Transitions: Criticality, Universality, and Scaling	401
	9.7.	Primordial nucleosynthesis	290			General remarks on the problem of condensation	402
	9.8.	Recombination	293		12.2.	Condensation of a van der Waals gas	407
	9.9.	Epilogue	295			A dynamical model of phase transitions	411
		Problems	296		12.4.	The lattice gas and the binary alloy	417
10	Ctatic	tical Mechanics of Interacting Systems:			12.5.	Ising model in the zeroth approximation	420
10.		Method of Cluster Expansions	299		12.6.	Ising model in the first approximation	427
	10.1.	Cluster expansion for a classical gas	299		12.7.	The critical exponents	435
	10.2.	Virial expansion of the equation of state	307		12.8.	Thermodynamic inequalities	438
	10.3.	Evaluation of the virial coefficients	309		12.9.	Landau's phenomenological theory	442
	10.4.	General remarks on cluster expansions	315		12.10.	Scaling hypothesis for thermodynamic functions	446
	10.5.	Exact treatment of the second virial coefficient	320		12.11.	The role of correlations and fluctuations	449
	10.6.	Cluster expansion for a quantum-mechanical system	325		12.12.	The critical exponents ν and η	456
	10.7.	Correlations and scattering	331		12.13.	A final look at the mean field theory	460
		Problems	340			Problems	463
11.	Statis	tical Mechanics of Interacting Systems: Method of Quantized Fields	345	13.		Transitions: Exact (or Almost Exact) Results	471
		The formalism of second quantization	345			One-dimensional fluid models	471
	11.2.	Low-temperature behavior of an imperfect Bose gas	355			The Ising model in one dimension	476

	13.3.	The n -vector models in one dimension	482	16.5.	Computer simulation caveats	650
	13.4.	The Ising model in two dimensions	488		Problems	651
	13.5.	The spherical model in arbitrary dimensions	508			
	13.6.	The ideal Bose gas in arbitrary dimensions	519	Appendice	es s	653
	13.7.	Other models	526	A.	Influence of boundary conditions on the	
		Problems	530		distribution of quantum states	653
				В.	Certain mathematical functions	655
14.		Transitions: The Renormalization Group Approach	539	C.	"Volume" and "surface area" of an <i>n</i> -dimensional	662
	14.1.	The conceptual basis of scaling	540	D	sphere of radius R	
	14.2.	Some simple examples of renormalization	543	D.	On Bose–Einstein functions	664
	14.3.	The renormalization group: general formulation	552	E	On Fermi–Dirac functions	667
	14.4.	Applications of the renormalization group	559	F.	A rigorous analysis of the ideal Bose gas and the onset of Bose–Einstein condensation	670
	14.5.	Finite-size scaling	570			670
		Problems	579	G.	On Watson functions	675
				Н.	Thermodynamic relationships	676
15.	Fluctuations and Nonequilibrium Statistical Mechanics		583	I.	Pseudorandom numbers	683
		Equilibrium thermodynamic fluctuations	584	Diblicaron	h.,	687
	15.2.	The Einstein–Smoluchowski theory of the	=0=	Bibliograp	пу	
		Brownian motion	587	Index		707
		The Langevin theory of the Brownian motion	593			
	15.4.	Approach to equilibrium: the Fokker–Planck equation	603			
	15.5.	Spectral analysis of fluctuations: the Wiener–Khintchine theorem	609			
	15.0					
		The fluctuation–dissipation theorem	617			
	15.7.	The Onsager relations	626			
		Problems	632			
16.	Computer Simulations		637			
	16.1.	Introduction and statistics	637			
	16.2.	Monte Carlo simulations	640			
	16.3.	Molecular dynamics	643			
		Particle simulations	646			