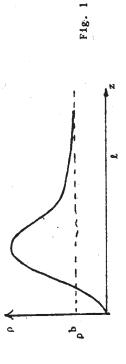
Department of Physics University of Maryland College Park, MD 20742-4111

Physics 603

HOMEWORK ASSIGNMENT #5

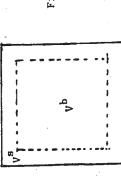
Spring 2013

Due date for problems on Thursday, April 4 [deadline on April 9].


- 1. PB 5.1
- 2. Statistics of deuterium:
- a) Discuss the wave functions needed to describe molecules of ortho-deuterium (o- D_2) and para-deuterium (p- D_2).
- b) Write down the partition functions for a system of N molecules of i) o-D₂, ii) p-D₂, iii) equilibrium D₂. Note that it is not straightforward to write the partition function for a
- iii) equilibrium D_2 . Note that it is not straightforward to write the partition function for normal D_2 ,
- c) Find expressions for the equilibrium ratios of $o-D_2$ to $p-D_2$ at i) very high T and ii) low T.
- 3. PB 6.1 and the following part of 6.2:

For BE and FD statistics show that $\langle n_{\varepsilon}^2 \rangle - \langle n_{\varepsilon} \rangle^2 = \langle n_{\varepsilon} \rangle \pm \langle n_{\varepsilon} \rangle^2$, respectively. Show then that in both cases the right-hand side is $k_B T \left(\frac{\partial \langle n \rangle}{\partial \mu} \right)_T$.

- 4. (5) PB 6.10. Part a should be familiar and is mostly to help you do part b. In part b, relate d T/T to dp/p for adiabatic systems and then use your result in part a.
- 5. Old qualifier problem, on next page.


1.3 In honor of the Gibbs sesquicental:

Consider a total number of N noble gas molecules (monatomic) confined in a cubical box of volume V, area A, and length L. The density of the gas can be described by figure 1.

The gas density $\rho(z)$ differs from the bulk density ρ^b only over a distance it(L from a wall.

- . What is the physical origin of the peak in ρ ? On figure i, indicate roughly an estimate of the radius R of a gas atom.
- 2. One can divide the box into bulk and surface regions, as depicted in figure 2, with $V=V^b+V^8$ and V^8 arbitrarily defined, similarly $N=N^b+N^3$. By definition $N^b=\rho^b\,V^b$. Show that if the dotted line is moved, $\Delta N^8=\rho^b\,\Delta V^8$, i.e. independent of the details of figure 1.

1.3 (cont.)

3. Suppose there is a surface tension o such that

$$dU = Tds - pdV + \sigma dA + \mu dN$$

Where μ is the chemical potential per atom. Also, du " du^b+du^8 , dN = dN^b+dN^8 etc.

Show that $dU^8 = TdS^8 - pdV^8 + \mu dN^8 + \sigma dA$ for an adiabatic, reversible expansion or contraction that conserves N.

4. One can show that the surface portion of the Glbb's potential
G = U + pV = TS satisfies

Derive (in the Gibbs convention V $_{8}$ $^{\circ}$ O) from this the Maxwell relation

$$\left(\frac{\partial S^8}{\partial N^8}\right)_{T,A}$$
 = $\left(\frac{\partial \mu}{\partial T}\right)_{\Gamma}$ where $\Gamma\equiv N^8/A$ is the surface gas

density

(Possible Hint: Take a partial of dG with respect to N8.)