Department of Physics University of Maryland College Park, MD 20742-4111

Physics 603

HOMEWORK ASSIGNMENT #4

Spring 2013

Due date Thursday, March 14 [deadline on March 26]. Reminder: midterm March 12.

- 1. (10) P&B problem 4.3. Note that the probability distribution in question is the binomial distribution.
- 2.(7) P&B problem 4.5. Recall that $q = \ln 3$, where 3 is the grand partition function.
- 3.(7) P&B problem 4.6
- 4.(6) P&B problem 4.19
- 5.(10) Kardar problem 4.9 (cf. P&B 4.10 and 4.11). Kardar's $\bf Q$ is our $\bf Z$; $\bf G$ is $\bf \Phi$.

Langmuir isotherms: an ideal gas of particles is in contact with the surface of a catalyst.

- (a) Show that the chemical potential of the gas particles is related to their temperature and pressure via $\mu = k_B T \left[\ln \left(P/T^{5/2} \right) + A_0 \right]$, where A_0 is a constant.
- (b) If there are \mathcal{N} distinct adsorption sites on the surface, and each adsorbed particle gains an energy ϵ upon adsorption, calculate the grand partition function for the two-dimensional gas with a chemical potential μ .
- (c) In equilibrium, the gas and surface particles are at the same temperature and chemical potential. Show that the fraction of occupied surface sites is then given by $f(T, P) = P/(P+P_0(T))$. Find $P_0(T)$.
- (d) In the grand canonical ensemble, the particle number N is a random variable. Calculate its characteristic function $\langle \exp(-ikN) \rangle$ in terms of $\mathcal{Q}(\beta\mu)$, and hence show that

$$\langle N^m \rangle_c = -(k_B T)^{m-1} \left. \frac{\partial^m \mathcal{G}}{\partial \mu^m} \right|_T,$$

where \mathcal{G} is the grand potential.

(e) Using the characteristic function, show that

$$\langle N^2 \rangle_c = k_B T \left. \frac{\partial \langle N \rangle}{\partial \mu} \right|_T.$$

(f) Show that fluctuations in the number of adsorbed particles satisfy

$$\frac{\left\langle N^2 \right\rangle_c}{\left\langle N \right\rangle_c^2} = \frac{1 - f}{\mathcal{N}f}.$$