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StatisticalMECHANICS

The  object  of  stat
.  mech

.
 is  To  study  systems  with  a  large

number  of  degrees  of  freedom  focusing on  macroscopic  properties  only :

.
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Concentrating  on  macroscopic  properties  simplifies  the problem

Tremendously .

 In  feet ,  just stoning the information  describing the  ground
state  of  N=  20  particles  is

,  and  it 'll  always  be  impossible :
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evolution  governed  by  Hamilton  eqs .
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This  is  an  idealization .

 In  reality ,  the  measurement  last  a  finite

Time  T  which  is  much  larger  than The  microscopic  scales .  For  instance
,
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suppose  f  is  He pressure  on  a  well  containing  a  gas .
 The  quantity

f ( qcel ,  peel )  fluctuates  

It 9kt , Pct )

irvhnhmnm

#
But  any  real

,  macroscopic  apparatus can't  measure  This and ,  instead
,

averages  fcqca ,  pca )  over  a  ( finite )  Time :

Stout , Pca )  average

irvhhmnm
 al

#
The  limit  T→•  is  just  a  mathematical idealization  of This averaging

out  of fluctuations .

Now ,  back  to  The analysis  of  § .

 
The  function  § C 9i° ,  pig  is  not

got
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really  a  function  of  The initial  condition  but
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only  of  the  Trajectory .  That  is
,  if  we¥  ' choose  another initial  point  go

'
,  pi
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we  will7) 

have  § 

Catoosa
 Yipiij since  The  difference

99  PP

 
between  The Two  trajectories  ( shown  in  red  in

 

The

figure )  is  negligible  compared  To  the infinite extend

of  The Trajectories .
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Now
,  it  could  be  That Two  different  trajectories  give  different  values

for  

÷ .*:# .

two  different
initial  conditions

,

Two  different  Trajectories ,

two  different  values

of  I

IT  Turns  out  That
,  for  the systems  we  are  interested  in

,  that

does  not  happen .  They  will  have  the property  that any  trajectory  passes
Through every  point  in  phase  space .

 This  is

called  The

 

[
actually ,  

" almost "}
well

,  every  point "
ergodic  pwperty

' !

 

any ,  
in  The measure

with  He same  value  of

 

they sense
.

the energy  ( and  total  momentum ,

and  angular  momentum )  as  The

initial  point .
 After  all

,  Those

aoe  quantities  conserved  by  the

hamiltonian  flow .

It's  really  difficult  to  prove  That a  realistic  system  has

the  argotic  property ,  even  if  by  proof  we  mean  a
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physicist  proof .
 In  a  couple  of cases  a  vigorous  proof is  available  ( look

up  " Sinai  billiards  / stadium 'D
.

 So
,  we  will  make  the  assumption  that

the  systems  we  are  interested  in  are  evgodic ,  That is
,  we  will  make

the "

ergodic  hypothesis "
.

 On  the  other hand  it  is  easy  To  find
systems  That are  not  evgodk .

 Any  conserved  quantity  
restricts

the  Trajectories  to  lie  on  a  sub  manifold  of  the  phase  space .

If  the only  conserved  quantities  are  The ones  resulting  from  the  standard

symmetries  ( energy ,  
momentum

] .
. . )  we  can  wonder  about  the validity

of  the  argotic  hypothesis within  The  restricted  subspace  with  constant

energy ,  
momentum ,  . . .

.
 There  are  systems  

withstmam  other  conserved

quantities  That this  subspace is  one  dimensional  ( they  are  called
"

integrate  systems'Y  For  them the  argotic  hypothesis is  not  True
.

In  between  integrate  and  eugodic  systems  There  aoe  intermediate

kinds  ( mixing ,⇐ move  on  This soon .
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An  important  insight  is  That eueq  thermodynamic 1 problem  can

be  phrased  as :
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( no  E
,  U  or  N  is  exchanged )

let the wall  move ,

or  be  porous  or  Transport

energy

Since  every  microstate  is  equally  probable ,  the final  macroscopic  state

will  be  The one  corresponding  to  The largest  number  of  microstates :

P ( Ei
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,

' )  BCEI .
 vi

,  i -

*  states  of  composite  *  of  microstates  #  of  microstates

system
 

of subsystem @
 

of  subsystem  @

Take  the case  the well  allows  exchange  of  energy  but  not  value

or  particle  number .  Then :
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EHEZ  =  Edt  Ez '

U
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,  uz  =  vi
Ni  =  N

,
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Now :
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( keeping  total

E  fixed )

So
,  knowing  P

,  LED  and  PZCE )  we  can  predict  the final  state
.

 It's

convenient  To  use  the  

entire 
=

 KB  but

instead  of  P
.  Notice  S  is  extensive  ( S  =  Sctsz )  as  long  as  the subsystems

are  large  enough  so  boundary  effects  are  negligible .

How  can  entropy  grow ? there's  an  apparent paradox  in  saying  the
-

entropy  is  maximized  ( within the constraints  of
the problem ) .  That's  because

,  using  Hamiltonian  eqs .
.

 we  can  show  S

is  a  constant
.

Let  pcqp ,  to )  be  an  initial  distribution  of  identical  systems
( an  ensemble ) .

 As  the  hamiltonian  flow  evokes  in  Time  every
element  of  the  ensemble  is  carried  with  it  and  the  distribution
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Since  the  number  of  systems  in  The ensemble  is  fixed  P  obeys
the  continuity  equation :  £  +
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This  result  is  known  as  the  Liouille  theorem
.

 IT  implies  That

The  density  of  elements  on  the  ensemble  does  not  change  as  it

evolves  along  the  Hamiltonian  flow .( of  cause
,  it  changes  at  any

fixed  position  in  phase  space ) .
 As  the  number  of  systems  in  The

ensemble  is  fixed ,  the  Liouille  theorem implies  that  the  volume

of  the  phase  space  occupied  by  the  ensemble  is  fixed .

So  The  entropy  ( log  of  the  volume )  cannot  change  either
.

How  can  the  entropy  grow  if  the  microscopic  equations  of  motion

show  that  it  does  not ?

 
Also

,  everyday  experience  shows  that

entropy  grows .
 Heat  goes  from  hot  To  cold  objects ,  cooked

eggs  cannot  be  uncooked
, .

. .

,  
not  the  other way  around

.

A  resolution  To  This  apparent  paradox  is  To  notice  That
.  for

systems
 

for  which  stat .  mech .  works  The  hamiltonian  flow Takes

nice  looking ,  
civilized  ensembles  PIED  '

into  convoluted intestine - looking
shapes

s#⇐¥±f*¥¥←  region  where

region  where  Pct)  to

pad  to

The  average  of  smooth observables  fcqp )  do  not  distinguish
between  The  average  performed  with  the  True  pa  on  The  "

coarse

grained
"  one  fit ) :
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 bigger  volume ,

smaller  density

I  
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fdqdpfcqp )  fcqpit )

For  all  practical  purposes,  The entropy  grows ,  as  long  as  we  only
look  at  observables  That are  very  smooth

.
 Macroscopic  obsenebks  don't

cave  about  The  precise position  of  The  particles  and  Tend  To  be

smooth  in  phase  space .
 Systems  whose Hamiltonian  flow

 
have

Its  property  are  called  "

mixing
"

,  It's  easy  To  show  That ergodk
systems  are  mixing  ( first ,  of  course ,  

we'd  have  to  define  the

mixing  property  move  vigorously )  but  mixing  systems  are  not

necessarily  ergodic .
 A

 good  way  to  visualize  the  mixing
property  is  Through an  analogy .

 Consider  2  bucket  of  water

( analogue  to  The phase  space )  where  we  put  one  drop  of
ink  ( ecto ) ) .

 Suppose  now  we  shake  the  bucket  and  the

water  moves  ( analogue  of  The Hamiltonian  flow )
.

 After  a  while

we  end  up  with  lightly colored  water  ( the  distribution  FKI ) .

If  we  could  examine  water  at  a  fine  scale  we  would  find
water  molecules  on  ink  molecules  but

,  from  far  away ,  we

see  colored  water
.

what  we  discussed  was  ( a  I

 

cursory  version )  of
one  way  of  justifying  The principles  of  equilibrium  STAT .

mechanics .  There  are  others
.

 The  last  word  has  not  been

said  yet .


