Physics 601 Dr. Dragt Fall 2002

Reading Assignment #9:

- 1. Dragt
 - (a) By this time you should have read everything about rotations.
- 2. Symon
 - (a) Excerpt on MOVING COORDINATE SYSTEMS.
- 3. Goldstein
 - (a) Sections 5.5 through 5.9 of Chapter 5. By this time you should have read all of Chapters 1 through 5.

Problem Set 9 due Wednesday, 11/20/02

- 76. The Levi-Civita symbol (tensor density) ϵ_{ijk} is defined by the rules $\epsilon_{123} = 1$, $\epsilon_{ijk} = -\epsilon_{jik}$, $\epsilon_{ijk} = -\epsilon_{ikj}$.
 - (a) Show that $\epsilon_{kji} = -\epsilon_{ijk}$. Thus ϵ_{ijk} is completely antisymmetric.
 - (b) List all nonzero values of ϵ_{ijk} .
 - (c) If $\boldsymbol{a} = \sum_{i} a_i \boldsymbol{e}_i$ and $\boldsymbol{b} = \sum_{j} b_j \boldsymbol{e}_j$, show that $\boldsymbol{a} \times \boldsymbol{b} = \sum_{ijk} \epsilon_{ijk} a_i b_j \boldsymbol{e}_k$.
 - (d) Show that $\boldsymbol{e}_i \times \boldsymbol{e}_j = \sum_k \epsilon_{ijk} \boldsymbol{e}_k$.
 - (e) Evaluate: $\sum_{k} \epsilon_{ijk} \epsilon_{\ell m k} = ?$ Use your result to prove the vector identity

$$\boldsymbol{a} \times (\boldsymbol{b} \times \boldsymbol{c}) = \boldsymbol{b}(\boldsymbol{a} \cdot \boldsymbol{c}) - \boldsymbol{c}(\boldsymbol{a} \cdot \boldsymbol{b}).$$

- (f) Show that $(J_i)_{jk} = -\epsilon_{ijk}$.
- 77. Suppose A, B, and C are $n \times n$ matrices and suppose a Lie product is defined by the commutator rule

$$[A, B] = AB - BA.$$

Verify that the Jacobi identity,

$$[A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0,$$

is satisfied.

- 78. Verify the relations:
 - (a) $\operatorname{tr}(\sigma_j) = 0$ for j = 1 to 3.
 - (b) $\operatorname{tr}(\sigma_j \sigma_k) = 2\delta_{jk}$ for j, k = 1 to 4.
 - (c) $(\boldsymbol{a} \cdot \boldsymbol{\sigma})(\boldsymbol{b} \cdot \boldsymbol{\sigma}) = (\boldsymbol{a} \cdot \boldsymbol{b})\sigma_0 + i(\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{\sigma}$
 - (d) $[\mathcal{J}_j, \mathcal{J}_k] = \sum_{\ell} \epsilon_{jk\ell} \mathcal{J}_\ell$ with $\mathcal{J}_j = -(i/2)\sigma_j$.

79. See the discussion after Theorem 44.

(a) Find the eigenvalues and eigenvectors of J_3 and $\mathcal{J}_3 = -\frac{1}{2}i \sigma_3$.

(b) Find the eigenvalues and eigenvectors of $J^2 = \sum_{1}^{3} J_j^2$ and

$$\mathcal{J}^2 = \sum_{1}^{3} \mathcal{J}_j^2.$$

(c) Find the eigenvalues and eigenvectors of $R(\boldsymbol{e}_3, \theta)$ and $u(\boldsymbol{e}_3, \theta)$.

- 80. Refer to Theorem 35.
 - (a) Show that $M(R; \alpha) = M(I, \alpha)M(R, 0)$ can be written in exponential form, at least near the identity. (It is actually possible globally.)
 - (b) Study the Lie Algebra for the Euclidean Group. That is, exhibit a convenient basis and compute the structure constants.

- 81. Let $R_1(\boldsymbol{n}_1; \theta_1)$ and $R_2(\boldsymbol{n}_2; \theta_2)$ be two given rotations. Compute the \boldsymbol{n} and θ for $R(\boldsymbol{n}; \theta) = R_1 R_2$. Hint: Use the 2 × 2 representation. State your results in terms of the vectors $\boldsymbol{\tau} = \boldsymbol{n} \tan \frac{\theta}{2}$, etc.
- 82. This problem relates three different parameterizations of the Rotation Group.
 - (a) Given \boldsymbol{n} and $\boldsymbol{\theta}$ for $R(\boldsymbol{n}; \boldsymbol{\theta})$, compute the quaternion 4-vector w such that $R(w) = R(\boldsymbol{n}; \boldsymbol{\theta})$.
 - (b) Given the Euler angles ϕ, θ, ψ for $R(\phi, \theta, \psi)$, compute w such that $R(w) = R(\phi, \theta, \psi)$.
 - (c) Given the Euler angles ϕ, θ, ψ for $R(\phi, \theta, \psi)$, compute \boldsymbol{n} and χ such that $R(\boldsymbol{n}; \chi) = R(\phi, \theta, \psi)$.

Problems 81 and 82 are worth 15 points. All others are worth 10 points.

(OVER)