Physics 601
Dr. Dragt
Fall 2002

Reading Assignment \#9:

1. Dragt
(a) By this time you should have read everything about rotations.
2. Symon
(a) Excerpt on MOVING COORDINATE SYSTEMS.
3. Goldstein
(a) Sections 5.5 through 5.9 of Chapter 5 . By this time you should have read all of Chapters 1 through 5 .

Problem Set 9 due Wednesday, 11/20/02
76. The Levi-Civita symbol (tensor density) $\epsilon_{i j k}$ is defined by the rules $\epsilon_{123}=1, \epsilon_{i j k}=-\epsilon_{j i k}, \epsilon_{i j k}=-\epsilon_{i k j}$.
(a) Show that $\epsilon_{k j i}=-\epsilon_{i j k}$. Thus $\epsilon_{i j k}$ is completely antisymmetric.
(b) List all nonzero values of $\epsilon_{i j k}$.
(c) If $\boldsymbol{a}=\sum_{i} a_{i} \boldsymbol{e}_{i}$ and $\boldsymbol{b}=\sum_{j} b_{j} \boldsymbol{e}_{j}$, show that $\boldsymbol{a} \times \boldsymbol{b}=\sum_{i j k} \epsilon_{i j k} a_{i} b_{j} \boldsymbol{e}_{k}$.
(d) Show that $\boldsymbol{e}_{i} \times \boldsymbol{e}_{j}=\sum_{k} \epsilon_{i j k} \boldsymbol{e}_{k}$.
(e) Evaluate: $\sum_{k} \epsilon_{i j k} \epsilon_{\ell m k}=$? Use your result to prove the vector identity

$$
a \times(b \times c)=b(a \cdot c)-c(a \cdot b)
$$

(f) Show that $\left(J_{i}\right)_{j k}=-\epsilon_{i j k}$.
77. Suppose A, B, and C are $n \times n$ matrices and suppose a Lie product is defined by the commutator rule

$$
[A, B]=A B-B A
$$

Verify that the Jacobi identity,

$$
[A,[B, C]]+[B,[C, A]]+[C,[A, B]]=0
$$

is satisfied.
78. Verify the relations:
(a) $\operatorname{tr}\left(\sigma_{j}\right)=0$ for $j=1$ to 3 .
(b) $\operatorname{tr}\left(\sigma_{j} \sigma_{k}\right)=2 \delta_{j k}$ for $j, k=1$ to 4 .
(c) $(\boldsymbol{a} \cdot \boldsymbol{\sigma})(\boldsymbol{b} \cdot \boldsymbol{\sigma})=(\boldsymbol{a} \cdot \boldsymbol{b}) \sigma_{0}+i(\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{\sigma}$
(d) $\left[\mathcal{J}_{j}, \mathcal{J}_{k}\right]=\sum_{\ell} \epsilon_{j k \ell} \mathcal{J}_{\ell}$ with $\mathcal{J}_{j}=-(i / 2) \sigma_{j}$.
79. See the discussion after Theorem 44.
(a) Find the eigenvalues and eigenvectors of J_{3} and $\mathcal{J}_{3}=-\frac{1}{2} i \sigma_{3}$.
(b) Find the eigenvalues and eigenvectors of $J^{2}=\sum_{1}^{3} J_{j}^{2}$ and $\mathcal{J}^{2}=\sum_{1}^{3} \mathcal{J}_{j}^{2}$.
(c) Find the eigenvalues and eigenvectors of $R\left(\boldsymbol{e}_{3}, \theta\right)$ and $u\left(\boldsymbol{e}_{3}, \theta\right)$.
80. Refer to Theorem 35.
(a) Show that $M(R ; \alpha)=M(I, \alpha) M(R, 0)$ can be written in exponential form, at least near the identity. (It is actually possible globally.)
(b) Study the Lie Algebra for the Euclidean Group. That is, exhibit a convenient basis and compute the structure constants.
81. Let $R_{1}\left(\boldsymbol{n}_{1} ; \theta_{1}\right)$ and $R_{2}\left(\boldsymbol{n}_{2} ; \theta_{2}\right)$ be two given rotations. Compute the \boldsymbol{n} and θ for $R(\boldsymbol{n} ; \theta)=R_{1} R_{2}$. Hint: Use the 2×2 representation. State your results in terms of the vectors $\boldsymbol{\tau}=\boldsymbol{n} \tan \frac{\theta}{2}$, etc.
82. This problem relates three different parameterizations of the Rotation Group.
(a) Given \boldsymbol{n} and θ for $R(\boldsymbol{n} ; \theta)$, compute the quaternion 4 -vector w such that $R(w)=R(\boldsymbol{n} ; \theta)$.
(b) Given the Euler angles ϕ, θ, ψ for $R(\phi, \theta, \psi)$, compute w such that $R(w)=R(\phi, \theta, \psi)$.
(c) Given the Euler angles ϕ, θ, ψ for $R(\phi, \theta, \psi)$, compute \boldsymbol{n} and χ such that $R(\boldsymbol{n} ; \chi)=R(\phi, \theta, \psi)$.

Problems 81 and 82 are worth 15 points. All others are worth 10 points.
(OVER)

