
Physics 601
Dr. Dragt
Fall 2002

Reading Assignment #6:

1. Dragt

(a) The Rotation Group

2. Goldstein

(a) Sections 4.1 through 4.8 of Chapter 4.

Problem Set 6 due Monday, 10/28/02

54. Assume that the earth is in a circular orbit around the sun, and that
Ms � Me. Imagine that the sun’s mass is suddenly reduced to 1/2
its previous value. What happens to the earth’s orbit? Hint: Use the
Virial Theorem.

55. Find the most general spherically symmetric potential such that if r =
h(θ) is an orbit, so is r = κh(θ) for every positive constant κ.

56. Find the most general potential which is spherically symmetric, cor-
responding to an attractive force everywhere, and such that for every
bounded orbit r = h(θ) we have h(θ + θ0) = h(θ). Here the constant
θ0 is not to depend on the orbit, but is to be the same for all orbits.
In essence, this problem calls for a recitation of the proof of Bertrand’s
theorem.

57. Derive Kepler’s equation relating the mean anomaly to the eccentric
anomaly. [See item B2 (page 5) of Berkeley Mechanics Notes.] Show
that Kepler’s equation

α = β − ε sin β
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can be solved for β in terms of α to give the result

β = α+ 2
∞∑

n=1

n−1Jn(nε) sinnα

where the Jn are Bessel functions. Incidentally, Bessel functions were
used here (by Bessel) before they were used in Electricity and Mag-
netism. Also note, that despite the inference apparently implied in
problem G3.2, the solution is not formal if the functions Jn are as-
sumed to be known. That is, the series is perfectly well behaved, and
even absolutely convergent for |ε| < 1 and α real. Finally, note that
G3.2 contains a misprint in an equation.

58. Consider motion in a central force field described by V (r) = λ/r2.

(a) Show that circular orbits (in the attractive case) are unstable.

(b) Find r(t), θ(t), and r(θ) for the general case (arbitrary initial con-
ditions and λ either positive or negative). Sketch various possible
orbits.

59. Find the orbit of a planet in the General Theory of Relativity, from the
Lagrangian given in item C2 (page 8) of the Berkeley Mechanics Notes.
First show that the Schwarzschild metric for a spherical gravitating
body given by

ds2 = c2(1− a/r)dt2 − (1− a/r)−1dr2 − r2[dθ2 + sin2 θdφ2]

leads to the advertised Lagrangian. Next show that the motion is in a
plane; take this plane to be the plane θ = π/2. Introduce u = 1/r and
show that the equation for the orbit may be written:(

du

dφ

)2

+ u2(1− au) =
c2

L2
(2E/c2 + au)

where L and E are constants; comparing with (1) in item A1 we may
identify these with the angular momentum and total energy, provided
the test-particle is of unit mass.

In actual planetary motion au is always small compared to unity, and
the equations may be solved by approximation. Evaluate au for Mer-
cury and the Earth, i.e. produce a number!
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Solve the equation for the orbit for the case of an almost circular orbit
and compute the precession of the perihelion of Mercury and of the
Earth in seconds of arc per century.

You are expected to carry the numerical work to its conclusion. The
following data will be needed:

One light-year = 5.88 ×1012 miles
Radius of orbit of Earth = 93, 000, 000 miles = R⊕
Radius of orbit of Mercury = 0.39R⊕

The answer for Mercury is ∼ 40 seconds of arc/century.

60. D1.4.6

61. As a simple application of the variational equation formalism, consider
the motion of a particle of mass m in the exterior gravitational field
of a heavy sphere of mass M . Assume that M � m. Then one can
work in a frame where M is fixed at the origin. Furthermore, since the
force is central, one can assume that motion takes plane in a plane.
Finally, let G denote the gravitational constant as measured by Hank
Cavendish.

(a) Using plane polar coordinates r and φ, write the Lagrangian for
the particle of mass m.

(b) Find the equations of motion for r and φ.

(c) Show that there is a circular orbit solution of the form

r = R , φ = ωt, (a, b)

and give a relation which determines ω.

(d) Consider variational solutions near the circular orbit by writing

r = R + ερ (c)

φ = ωt+ εψ. (d)

Find the variational equations obeyed by ρ and ψ. Hint: Rather
than using the full formal machinery, it may be easier to substitute
(c,d) into the equations of motion and then retain only low order
terms.
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(e) During his walk in outer space while in circular orbit about the
earth, the cosmonaut A. Leonov faced the earth and threw the lens
cap of his movie camera directly toward the earth with velocity v.
Suppose he threw the lens cap at the moment t = 0 when φ = 0.
Then, at this moment, one may assume the initial conditions

ερ = 0 , ερ̇ = −v, (e, f)

εψ = 0 , εψ̇ = 0. (g, h)

Find the variational solutions ρ(t) and ψ(t) corresponding to these
initial conditions. In particular, show that if comrade Leonov
subsequently turns himself to face away from the earth, then he
will see the lens cap coming toward him one orbital period later
and, to the accuracy of the variational solution, he should be able
to catch the lens cap!

(f) Find the variational solutions ρ(t) and ψ(t) for general initial con-
ditions in the plane of the orbit. Suppose that the lens cap is
thrown out in the direction of the orbit at t = 0. Then the lens
cap is going faster than the cosmonaut and his space craft. Show
that the lens cap is found behind the cosmonaut one period later
even though it is going faster. Conversely, show that if the lens
cap is thrown against the orbit velocity, so that it is going more
slowly than the cosmonaut, he will find it ahead of him one period
later.

(g) What happens if the lens cap is thrown out of the plane of the
orbit?
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