
Physics 601
Dr. Dragt
Fall 2002

Reading Assignment #4:

1. Dragt

(a) Sections 1.5 and 1.6 of Chapter 1 (Introductory Concepts).

(b) Notes VI, Hamilton’s Equations of Motion (to be found right after
the ELEMENTARY CONCEPTS Section).

2. Goldstein

(a) Sections 3.7 through 3.12.

(b) Sections 8.1 through 8.3. and Sections 8.5 through 8.6

Problem Set 4 due Monday, 10/14/02

34. Find the orbit r(t) for a nonrelativistic particle of mass m and charge
q moving in spatially uniform and temporally constant electric and
magnetic fields E and B.

35. You are scanning, with stereo views, tracks in bubble chamber pho-
tographs. A spiral track sketched below catches your eye, and you
measure its coordinates at points a, b, and c:

Point Coordinates in cm
x y z

a 3.84 .38 1.9
b 3.57 1.39 3.1
c 3.14 2.24 ?
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The chamber is a uniform magnetic field

B = Bez

With B = 9000 gauss. Assume that the particle charge q is equal
in magnitude to the proton charge. Find the sign of the charge, and
the momentum pa the particle had when it was at point a. (Assume
that the particle loses negligible energy due to scattering as it moves
between points a and c. But, just from looking at the picture, how do
you know it moved from a to c, and not from c to a?) Your answer
should be a vector!

36. A velocity selector for a beam of charged particles of mass m, charge
e, is to be designed to select particles of a particular velocity v0. The
velocity selector utilizes a uniform electric field E in the x-direction
and a uniform magnetic field B in the y-direction. The beam emerges
from a narrow slit along the y-axis and travels in the z-direction. After
passing through the crossed fields for a distance `, the beam passes
through a second slit parallel to the first and also in the yz-plane. The
fields E and B are chosen so that particles with the proper velocity
moving parallel to the z-axis experience no net force.

(a) If a particle leaves the origin with a velocity v0 at a small angle
with the z-axis, find the point at which it arrives at the plane
z = `. Assume that the initial angle is small enough so that
second-order terms in the angle may be neglected.

(b) What is the best choice of E, B in order that as large a fraction as
possible of the particles with velocity v0 arrive at the second slit,
while particles of other velocities miss the slit as far as possible?

(c) If the slit width is h, what is the maximum velocity deviation δv
from v0 for which a particle moving initially along the z-axis can
pass through the second slit? Assume that E, B have the values
chosen in part (b).

37. A particle with charge q and mass m moves in the field of a magnetic
dipole with moment µ. (This is a slightly simplified model of the Van
Allen radiation.) The assumed magnetic field can be derived from a
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vector potential

A =
µ× r

r3

where r is measured from the center of the dipole. Let the z axis be
taken along µ.

(a) Find the Lagrangian of the particle in cylindrical coordinates ρ,
φ, z. For simplicity, assume the motion is nonrelativistic.

(b) Find the equations of motion.

(c) Find the Hamiltonian and show that it is a constant of motion.

(d) Find a constant of motion related to the axial symmetry of the
problem. Show that if ρ(t) and z(t) are known, φ(t) can be found
by an integration.

(e) Exhibit a Lagrangian which describes the motion in the ρ-z coor-
dinates.

38. A particle of mass m moves under the influence of gravity on the inner
surface of a paraboloid of revolution x2 + y2 = az which is assumed
frictionless.

(a) Introduce cylindrical coordinates
ρ, φ, z. Write a Lagrangian for
the system employing ρ and φ as
generalized coordinates.

(b) Find the Hamiltonian for the
system.

(c) Find two constants of motion.

(d) Show that the particle will
describe a horizontal circle in the
plane z = h provided that it is
given the proper angular velocity
ω. What is the magnitude of this
velocity?

(e) Obtain the “frequency of oscillation” in ρ for orbits near the orbit
of part d.
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39. A bead of mass m is free to slide without friction on a rotating hoop
of radius a in the presence of gravity. See the accompanying figure.

(a) Find the Lagrangian using θ as a generalized
coordinate.

(b) Find the Hamiltonian H.

(c) Show that H is a constant of motion if ω̇ = 0,
but the energy is not.

(d) Study the stability of the equilibrium solution
θ = 0 assuming ω̇ = 0. Find the frequency Ω of
small oscillations about θ = 0, again assuming
ω̇ = 0. Show that if ω is increased to the point
where θ = 0 becomes an unstable equilibrium
point, then two other equilibrium points appear.

40. Show that the two Lagrangians

L1 =
1

2
(q̇2 − q2)

and

L2 =
[
1

2
qq̇2 − 1

3
q3

]
sin t +

1

6
q̇3 cos t

give the same equation of motion. Do L1 and L2 differ by a total time
derivative, i.e. a term of the form d

dt
f(q, t)? This problem illustrates

the nonuniqueness of Lagrangians.

41. A system with 3 degrees of freedom has the peculiar Lagrangian

L(q, q̇, t) = q̇2
1q2 cos q3 + q̇2

2q2q3 + q̇2
3 tan(q2q3)

+ q̇1q̇2q̇3 + q2 exp q3 + ct5q2q3.

(a) Find a constant of motion.

(b) If c = 0, find an additional constant of motion.
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42. The system shown in the figure below is used in the construction of
gravimeters.

A mass M hangs from a beam B of length a and of negligible mass.
This beam can rotate freely at C in the x = 0 plane. To counteract
the gravity force acting on M , a spring S is used. The restoring force
provided is k(` − `0) where `0 is the natural length of the spring, and
k is the spring constant.

(a) Using a Lagrangian, find the equation of motion for the angle θ,
and find the equilibrium angle θ0.

(b) Assume that the mass M is such that the equilibrium angle is given
by θ0 = 0. Consider small oscillations about equilibrium. Show
that the frequency ω of oscillation is proportional to a fractional
power of `0, and thus can be made very small by proper construc-
tion of the spring. (This property leads to the high sensitivity of
gravimeters to small change in the acceleration of gravity.)

(c) This system could also be used to isolate the mass M from verti-
cal noise in the support. Assume that the supporting wall which
contains points C and A moves up and down (vertically) with am-
plitude Λ and angular frequency Ω. Incorporate this fact into the
Lagrangian to find the appropriate equation of motion. Describe
the transfer of noise to the mass M as a function of the frequency
of the noise and the resonance frequency of the mass-spring sys-
tem. That is, find the ratio of the amplitude of M to that at C
as a function of frequency.
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43. The Implicit Function Theorem states that if the Jacobian determinant
of a mapping is not zero in some region R, then the mapping is locally
invertible. That is, for each point in R there is some region R′, con-
taining the point, within which the map is one to one. The region R′

may be smaller than R. Suppose the Jacobian determinant is different
from zero everywhere. Then one might wonder whether or not the map
has to be globally one to one. The answer is, “not necessarily so”, as
the following example shows. Let f be the function

f = ex sin y.

Define the mapping {x, y} → {u, v} by the rule

u = ∂f/∂y , v = ∂f/∂x.

(a) Verify that the Jacobian determinant for this mapping is nonzero
everywhere in the finite x, y plane.

(b) Show that the mapping is not globally one to one by examining
the image of the x, y plane in the u, v plane.
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