Physics 601 Dr. Dragt Fall 2002

Reading Assignment #12:

- 1. Dragt
 - (a) Get caught up on past reading assignments.
- 2. Goldstein
 - (a) Chapter 10.

Problem Set 12 due Friday, 12/13/02

101. Suppose a "burst" of protons is injected into a uniform electric field $E = E_0 e_z$. Assume the burst is initially concentrated at x and y = 0 and v_x and $v_y = 0$, but is uniformally spread in z and v_z about the values z = 0 and $v_z = v_z^0$ within intervals $\pm \Delta z$ and $\pm \Delta v_z$. Thus the problem is essentially that of one dimensional motion along the z axis. The initial distribution is shown schematically below.

Find the distribution at later times,

and verify Liouville's theorem. Do not assume Δz and Δv_z are infinitesimal. Neglect Coulomb interactions between particles.

- 102. Consider a free particle of mass m in 3-dimensional space. Study the Poisson bracket Lie algebra generated by the dynamical variables L_x , L_y , L_x and p_x , p_y , p_z where $\boldsymbol{L} = \boldsymbol{r} \times \boldsymbol{p}$. Compare this algebra to that of the Euclidean Group.
- 103. Consider a Hamiltonian of the form $\mathcal{H}(p,q,t) = \sum_{m,n=0}^{\infty} a_{mn}(t)(p-b)^m(q-c)^n$ where b and c are constants. This is a pretty general form. Show that the transformation P = 2p and Q = 2q is not canonical, but that nevertheless there exists a new Hamiltonian K(P,Q,t) such that $\dot{Q} = \frac{\partial K}{\partial P}, \dot{P} = -\frac{\partial K}{\partial Q}$. Find K.
- 104. Suppose M is a 2×2 matrix. Show that the necessary and sufficient condition for M to be symplectic is det(M) = 1.
- 105. Let M denote the $2n \times 2n$ matrix

$$M = \left(\begin{array}{cc} R & 0\\ 0 & R \end{array}\right)$$

where 0 denotes an $n \times n$ zero matrix and R denotes an $n \times n$ orthogonal matrix. Show that M is symplectic.

- 106. Let α and β be any two 2n component real vectors different from zero. Show that there exists a symplectic matrix M such that $\beta = M\alpha$. You have shown that the symplectic group acts transitively on the manifold $(E^{2n} - \text{ origin})$.
- 107. Goldstein 9.4.
- 108. Goldstein 9.39.

All problems are worth 10 points each.