Homework 3

Theoretical Dynamics September 24, 2010

Instructor: Dr. Thomas Cohen Submitted by: Vivek Sazrena

1 Goldstein 8.1

1.1 Part (a)

The Hamiltonian is given by
H(gi, pi,t) = pigi — L(qi, i, t)
where all the ¢;’s on the RHS are to be expressed in terms of ¢;, p; and t. Now,

oH oOH oH
dH = — i+ 7(11% + —
dq; dq Op; ot dt

From (1),

dH = pidg; + ¢idp; — dL
oL oL oL
= pidg; + qidp; — | 7—dgi + Z—dg; + —-dt
Diaq; + gidp <8qu+aqu+8t>

oL . oL . oL
= —afqidqi + qidp; + <pz - 8%> dg; — Edt

Comparing (2) and (3) we get

OH oL
=—— = —p (2nd equality from Hamilton’s equation)
9 9q;
0H
g = (also Hamilton’s equation)
9q;
oL . . .
D — % = 0 (H is not explicitly dependent on ¢;)
di
oL  O0H
ot ot

From (4) and (6) we have

d (0L OL
(=)= = =1,2,...
dt <aqz) aqz 07 1 )= 7n

which are the Euler-Lagrange equations.



1.2 Part (b)

L/(pvput) = _pZC,Il - H(q:put)
d
= pigi — H(q,p,t) — — (Pigi
pid (@p:t) = = (Pigi)
d
= L(q,q,t) — — (pigi
(4:4,t) = = (Pidi)
= L(q,q,1) — pigi — pids
So,
oL’ oL’ oL’
A’ = Zap+ Tap+ S
o " T ap T
L
= —¢idp; — qidp; + ?)tdt (from (9))
Comparing (12) and (13) we get
. or
q = Op;
oL
T o
Thus the equations of motion are
d L L
— 8. _8 = 0, 1=1,2,...,n
dt \ Opi Op;

2 Goldstein 8.6

Hamilton’s principle is

5/Ldt =0

or equivalently

5 [2ar —

0

(15)

(16)

(18)

(19)

We can subtract the total time derivative of a function whose variation vanishes at the end
points of the path, from the integrand, without invalidating the variational principle. This
is because such a function will only contribute to boundary terms involving the variation
of g; and p; at the end points of the path, which vanish by assumption. Such a function is

piq;. So, the ‘modified” Hamilton’s principle is

f (o1 ) ar = o

3-2

(20)



Using the Legendre transformation, this becomes

5/ (2pi¢i — 2H — pigi — pigi) dt = 0 (21)
— 5/ (2H+piq¢ —piq'i) dt = 0 (22)
now,
T
. . 0n><n 1n><n qn
nxn nxn 2nxX2n pl
L Pn 2nx1
= n'Jn (24)
So (22) becomes
5 / (2H +n"Jn)dt = 0 (25)

which is the required form of Hamilton’s principle.

3 Goldstein 8.9

The constraints can be incorporated into the Lagrangian L by defining a “constrained
Lagrangian” L., as
Le(g,6,t) = L(g,¢,t) = > Moi(q, p, 1) (26)
k

Applying Hamilton’s principle, and using the Legendre transformation for L, we get

5/ <pidi—H(q,p,t)—Zkk@bk(q,p’t)) dt = 0 (27)
k

By analogy with the constrained Lagrangian, we can define a “constrained Hamiltonian”
H,. as
He(g,p,t) = H(q,;p:t) + > Mok (g, p, t) (28)
k

Since both the terms are functions of ¢;, p; and ¢, this is a “good” Hamiltonian. Equation
(27) can then be written as

5 [ it~ g it = 0 (20)
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This bears a resemblance to the usual variational principle in Hamiltonian mechanics, for
a Hamiltonian H.. So the Hamilton equations are

. _ a'PIC
q = Op;

. _ 8-E[C
pi = — B4,

which become

. 0OH Oy,
G = Gt ;)\k . (30)
) OH 0y,

g = 1
B gt LM, oy

Time as a canonical variable

If time t is treated as a canonical variable, we define g,41 = ¢t. By Hamilton’s equations

OH
ol = — 32
Pn+1 D1 (32)

OH
= T (33)

dH
__dd 4
o (34)

and
OH

An+1 i1 (35)
=1 (since gn+1 = 1) (36)

As the Hamiltonian contains terms of the form p;¢; for each coordinate and its canonical
momentum, in order to incorporate the constraint imposed by the inclusion of time as
the (n + 1)th canonical variable, we include a term of the form p,y1¢p+1 = Pn+1 to the
Hamiltonian to set up the constraint. Equivalently, the constraint can be obtained by
integrating equation (34) above, and is given by

H(qi,. - qn, 41301, Pn) + Ppg1 =0 (37)
Hamilton’s principle,
5 [ it~ mde = 0 (38)
can be written as
o [ widi—meas = o (39)
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where ¢ = dt/df and 6 is some parameter.

Using the constrained form of Hamilton’s equations we get

. OH ,

g = (1+)\)api, i=1,2,...n (40)

. OH .

pi = —(1—1—)\)8%, i=1,2,...n (41)
Gny1 = A (42)
. OH oL
Pnt+1 = _(1 + )\)E = _E (43)

By regarding H' = (14 \)H as an equivalent Hamiltonian, these equations are the required
(2n + 2) equations of motion. Also, A = ¢p4+1 = dt/d0.

4 Goldstein 8.26

4.1 Part (a)

In the given configuration, both springs elongate or compress by the same magnitude.
Suppose ¢ denotes the position of the mass m from the left end. At ¢t = 0, ¢(0) = a/2,
but the unstretched lengths of both springs are given to be zero. Therefore, the elongation
(compression) of spring k; is ¢ and the compression (elongation) of spring ko is q. The
potential energy is

V= %quQ + %l@q? = %(kl + k2)q? (44)
The kinetic energy is
T = %mcf (45)
The Lagrangian is
L=T-V = %m(f - %(kl + ko)q? (46)
The momentum canonically conjugate to the coordinate ¢ is
b= G = m (a7)
So the Hamiltonian is ) .
H=pg—L= imq'2 + 5k + k2)q? (48)
that is,
Py 1
H(q,pg,t) = ﬁ + 5 (ki + k2)q? (49)
Clearly, the Hamiltonian equals the total energy F. The energy is conserved since,
S8 =i+ (ky + k2)ad = d(~ (ks + Fa)a) + (k1 + ka)ad = 0 (50)

where we have used the equation of motion!. In this case, the Hamiltonian is also conserved.

1%(2—5)—3—5:0 — mij+ (k1 + k2)g =0



4.2 Part (b)

Substituting ¢ = Q+bsin(wt) and ¢ = Q+bw cos(wt) into the expression for the Lagrangian,

we get
L(Qant) = %m(Q + bw cos(wt))2 — %

and the momentum canonically conjugate to the coordinate () is given by

oL :
=06~ m(Q + bw cos(wt)) (52)

(k1 4 k2)(Q + bsin(wt))? (51)

pQ

So the Hamiltonian becomes

H(Q.po:t) = pQ—L(Q.Q.1) (53)
= m(Q + bw cos(wt))Q — Lm(Q + bw cos(wt))? + %(lﬁ + k2)(Q + bsin(wt))?

59 2 2
_ mQT mbw cos?(wt) + %(kﬁl + k2)(Q + bsin(wt))?

\V)

2 2
2
g 1 . 2
= o pobw cos(wt) + i(kl + k2)(Q + bsin(wt)) (54)

The Hamiltonian is now explicitly dependent on time, and hence is not conserved, as is
confirmed by the fact that dH/dt # 0. The energy is given by

E=T+V = %(Q + b cos(wt))? + %(k:l k) (Q + b sin(wt))2 (55)
So,
dE . . . ‘ ,
s m(Q + bw cos(wt))(Q — bw” sin(wt)) + (k1 + k2)(Q + bsin(wt))(Q + bw cos(wt))
= (Q + bwcos(wt))(m(Q — Bw?sin(wt)) + (k1 + k2)(Q + bsin(wt)))
= (Q+bwcos(wt))(m + (k1 + k2)q) (56)
=0 (c.f. footnote on prev. page) (57)

Therefore, the energy is conserved, as expected (the energy is still given by 7'+ V', but the
Hamiltonian is not T4+ V anymore, as the relationship connecting the generalized coordinate
to the cartesian coordinate is now explicitly dependent on time).

5 Goldstein 8.23

5.1 Part (a)
The Lagrangian for the system is
L= %m('v “v) 4 eA(r) v — eV (1) (58)
The canonical momentum is oL
p:%:mv+eA (59)
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So the Hamiltonian is
H = pv-L (60)
1
= (mv+eA) v— <2m('v ‘v)+eA(r)-v— eV(r))

= %v-v + eV (r)

_ (= eA)Q;TEp —<4) | ovin (61)
1

= %(p2 —2ep- A+ e*A?) +eV(r) (62)

Now,
1
p-A = p-inr
1
= B (rxp) (63)
1
= §B-J (64)

where J = r X p denotes the angular momentum. Also,

1
A? = Z(er)-(er)
1
= 1327“2 (as B is perpendicular to 7) (65)

So the Hamiltonian of equation (58) becomes

H- P °p J+62B22+V() (66)
 2m 2m 8m " evar

5.2 Part (b)

Let vigb = (%,7) denote the velocity of the particle in the lab frame, and v = (2/,9')
denote the velocity in the rotating frame. Without loss of generality, we may assume that
motion is confined to the zy-plane. We first derive a relationship between the Hamiltonian
in a rotating frame with that in a non-rotating frame (in this case, the lab frame). The
coordinates are related by

r = 2’ cos(wt) — 1y sin(wt) (67)
y = o' sin(wt) + 1 cos(wt) (68)

Here, it has been assumed that the rotation is counterclockwise, i.e. w > 0 for counter-
clockwise rotation. So the velocity components are related by

i = i’ cos(wt) — g sin(wt) — w(a’ sin(wt) + 3 cos(wt)) (69)
= i'sin(wt) + ¢ cos(wt) — w(z’ cos(wt) — ¢ sin(wt)) (70)
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Therefore
Vil =22+ 97 = i?+9%+ 2w(zy — 2y) + w2r? (71)

The Lagrangian in the lab frame is

L = %mvlaf — eV () (72)
= %m(j:'2 +9?) + mw(2'y — i'y) + %mw2r2 —eV(r) (73)

The momenta canonically conjugate to x and y in the rotating system are
P = of=m(i ) (74)
py = gyL, =m(y + wz') (75)

So the Hamiltonian in the rotating frame is
H = ppi'+pyy — L (76)
2 2

= P e - o) + eV () ()
= pi/;?;lpf/ — Jlw+ eV (r) (78)

where J, denotes the angular momentum in the z-direction (direction of w) as measured in
the rotating frame. This means that for counterclockwise rotation along the z-axis,

Hrotating frame = Hlab frame — WJZ (79)

This is the general relationship between Hamiltonians in the lab frame and rotating frame.

For this problem, from equation (62) above, we have

2 2
p eB e
Hiab frame = ST %J + S—mB%Q + eV (r) (80)

as B= B2z and J = J,2 = J2Z. So, the Hamiltonian in the rotating frame is

2 2
p eB e
Hrotatingframe = % - (W + 277’L> Jz + %327'2 + GV(T) (81)
It is interesting to note that if w = w, = —%, then the term linear in the magnetic field
vanishes. In this problem, it is given that
eB
w=—-—— 82
h (52
which is twice the frequency w.. So, in this case, the Hamiltonian becomes
2 2
P eB e
Hrotat'mg frame — % + %Jz + 87mB2r2 + 6V(T‘) (83)
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6 Problem 1

6.1 Part (a)
The subscript PB is suppressed for clarity.

[Li, Lijlpe = [€iapTaPp, €jy5TDs]
= €iaB€jvsTaPg, TyPs)
€iaB€jys (TalPp, Typs] + [Ta, ypslps)  (as [A, BClpp = B[A,Clpp + [A, BlppC)
€iap€jvs (TalDs, Ty]Ps + Taty[pg; Ps] + [Ta, 24]PsDs + T[T a;s Ps]PS)
€iaf€jys(—08yTaPs + 0asTADp)
€iaB€j3s(—TaDs) + €iaBEjraTyDs
€iaB€j33Tals — €ifaCiyaTaPs
(0ij0as — dis0ja)TaPs — (0ij0py — 0iy0;3)TPp
= (0ijzapa — x;pi) — (dijzpg — TiD;)

= Tipj — Tjpi

Now, [Li, Lalpp = x1p2 — wop1 = L3, [L1,Lslpp = x1p3 — x3p1 = —La, [L3, Lo]lpp =
x3p2 — T2p3 = €321 — L1, etc. So, w;p; — x;p; = €1 L.

Hence, [L;, L;jlpp = €5k L.

6.2 Part (b)
For each i = 1,2, 3,
[Li,L2]pB = [LZ,L]L]] (sum over j)
= Lj[Li, L] + [Ls, L] L;
= Lj(eijuLr) + (€ijiLle)L;
= 2€ijk:Lij
=0 (as € is antisymmetric under j <+ k, while L; Ly, is symmetric.)
So,
(L, L*pp = &l[Li,L*pp=0 (84)

6.3 Part (c)

For each i = 1,2, 3,

0L 0f(r) OL; 0f(r)
[Li, f(r)lpB = 0t O Opn Ora (85)

Now, r = \/z;x; and L; = €;j,2jpk, S0
of or Of xaOf

Bra = Buadr ror (86)
of
g = O (87)



So,

_OL; 9f(r)
Opa 0%q
o O(€ijk;pi

[Li, f(r)]PB

) 01 (r)

T OPa

,
€kt Of
r or
(rxr);of
a or

r

7 Problem 2

7.1 Part (a)

a&‘J 9

[§i7§j] = 877704 aﬁanﬁ

)

08

So,

8& agg

e’ ong

852) Jos % ons

0N

d&i 9%;

o (de) Jap ong
. 9E;
([&> g]) Jaﬁa
( 06 , g
Mo \ 01, " O

0%, g

Onaony, * ons
0 d%¢;

B

a7 \ Ongon.,
Now, for ¢ = 0, & = 1, so the second order terms

J

d
351

Ma <
o¢; B,
Jog——
e g
n 8& 0
e aﬁa
0&;
Japg 2= +
) 7 ong
9&;
on,

+

i
il

_l’_

)
o 3

(67

QD
o 8o

ONa,
P9
" 377@?75

0005
“ oneg O

+ N Q

9%
MaOny | —g

82£j
OO

851 I

)

€=

or

 €jkTalj0a ) Of
or

(89)

0¢;
ong

(3)

([5]7 ])
9
58nﬁ
3]
oy
82
wo
OnpOng

)

ds;
de

Jg
* o

0¢;
one ~

)

(a2

(90)

0



equal zero. So,

d.. . 04 d%g o | 0& . g dg
@9 = o enon " ons T ona o omgon, OV
. 2 . . 2 .
_ 8& T 0 g ag] agz 0 g 85] (92)

A YA
e Onyoms " Ons T One” Oy oms " O

which is obtained by switching v <+ «, § <+ § in the first term and 0 < ~, w < § in the

second term. As J is antisymmetric, Js, = —J,5. So,
d 0&; g 06 0% &g 9;
7‘5%& = Ja J(Si_ a S~ 93
i =0 0n” " Omyons " ons 9" omydng T s (93)
= 0 (94)

So upto O(e?), we have d[¢;, £;]/de = 0 and so [¢;, &;] is constant up to O(€?). As [&;, §lleo =
[771',77]'] = Jij, we have [fl,éj] = Jij upto 0(62).

So, & is a canonical transformation upto O(e?).

7.2 Part (b)

First of all,
n(&0)=¢ (95)

because at ¢ = 0, the canonical coordinates overlap in phase space. So, using the result
of part (a), n(&,t) can be treated as a one-parameter family of canonical transformations
(parametrized by t), provided there exists some function g satisfying

dg;

o (€, 9]pB (96)

This condition is seen to be satisfied if g is taken as the Hamiltonian H, for in this case,

_ %, oH
&, Hlpp = 9%, "M B, (97)
= (51'ka]-§? (98)
J
OH
= Jijaigj (99)
= & (100)

where the last equality is obtained via Hamilton’s equations. So, taking g = H satisfies the
Poisson bracket relation with H acting as the generator of time translations.



