Theoretical Dynamics September 16, 2010

Homework 2

Instructor: Dr. Thomas Cohen Submitted by: Vivek Sazrena
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Taking the point of support as the origin and the axes as shown, the coordinates are

(r1,91) = (l1sinfy, Iy cosby) (1)
(x2,y2) = (l1sinfy — lysinBy, —1; cos Oy — la cos b2) (2)
The Lagrangian is
L=T-V (3)
where
1 . . 1 . .
T o= Sm(@t+9i) + 5ma(id +3)
1 . 1 . . ..
= §m1l%9% + §m2(l%9% + l%@% — 2111960164 008(91 + 92)) (4)
and
V. = —maglycosty —mag(ly cosby + I3 cos ) (5)
So,

1 . 1 . .
L= §(m1 +m) 1367 + §m2l§9§ —malyla6102 cos(01 +02) +migly cos By +mag(ly cosby + 12 cosbs) (6)
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The derivatives are

oL . . . .
87 = (m1 + mg)l%el — mglllgeg COS(01 + 02), —_— = mglgeg — m2l1l291 COS<91 + (92) (7)
1 2
oL s . . W .
(‘:)791 = m2l1l201¢92 s1n(91+92)—mlgl1 sin 01—77129[1 S1n 91, (9792 = m2l1l29192 Sln(91+92)—Mle2 Sin (92
(8)
d [ OL - . o
% 67 = (m1 + mg)l191 — malylabs COS(91 + 02) + m2l1l292(91 + 92) sm(01 + (92) (9)
1
d [/ OL o . .. . )
% 87 = m2l292 — malylaby COS(91 + 92) + m211l291(01 + 92) Sln(91 + 92) (10)
2
The Euler-Lagrange equations are
4oLy _ oL _
da(ory oL _
dt 802 005 N
that is,
(m1 + mg)l%él — m211l2é2 COS(91 + 92) + mglllgég Sin(@l + 92) + (m1 + mg)gll sin 64 0 (11)
mgl%ég — MQlllgél COS(91 + 92) + mzlllgé% sin(91 + 92) + magls sin 6o = 0 (12)
2 Goldstein 2.20
A
_’}\-—
da
b %
. . 1. 5 1 .9 .9
Kinetic Energy T = iMxl + im(wz +95) (13)
Potential Energy V. = mgy (14)




Constraint:

G(z1,x2,y2) =y2 — (x2 —x1)tana =0 (15)
Lagrangian:
1 1
L=T-V = Mii+ m(i3 +5) — mgy, (16)
Constrained Lagrangian:
1 1
L.=T-V-)\G= iM:E% + §m(ac% +92) — mgys — Alyo — (x2 — 1) tana] (17)
The Euler-Lagrange equation,
d (0L oL
=)= = 1
dt < x1> 01 0 (18)
d (0L 0L
(=)= = 0 19
dt <8$2> 6332 ( )
d (0L oL
(=)= = 90 20
dt (8y2> 6y2 ( )
give
Mii; + Atana = 0 (21)
mig — Atana = 0 (22)
mis +mg+X = 0 (23)
Adding (21) and (22) we get
Mi1+mio =0 (24)

which upon one integration wrt time, yields the expected result that the linear momentum of the
(block + wedge) system in the X-direction is constant. Multiplying (23) throughout by tan «,

using (15) to write 2 = (Z2 — 1) tan o and substituing Atana = —MZ; from (21) we get
m(Ze — 1) tana+mg+ A = 0
— —(M +m)i tan’a + mgtana — Mi; = 0
So,
.. m gtana
! M (14 %) tan?a + 1 (25)
.. gtana
Fo = — 26
2 (1+%)tan2a—l—l (26)
.. m gtan2 «
- (14 —) 27
LE ( M (1+%)tan2a+1 27)
= L (28)

(1+ %)tanza—i— 1
The signs are consistent: as the particle descends the slope of the wedge, it moves to the left in
the ‘lab’ frame, as the wedge moves to the right, conserving linear momentum in the horizontal
direction. Also, as m/M — 0, we recover the solution for a particle moving down a stationary wedge:
#1 =0, ¥ = —gsinacosa, js = —gsin a (so that the acceleration of the particle along the incline is
i3+ i3 = gsina).



Work done by the constraint forces

The three ‘constraint forces’ are

oG t

Fy, = Agz—=Atana=— mgana
0xy (1+ %) tanZa + 1
oG t

F,, = Az—=-)Atana= myrana
019 (1+ %) tanZ o + 1
oG mg

F, = A—=X=—

Yz Oy (1+ %) tan2a + 1

(29)
(30)

(31)

The accelerations found above are constant, so the velocity varies linearly with time. Assuming that
at t = 0, the wedge and particle both have zero velocity, the work done by the constraint force on the

wedge is

W1 = /Fxldxl

1 .
= §Fm1$1t2

1 mg tan o
2 (1+ %) tan?a+1

2
1 mﬁgQ tan? o .2

C2[(1+ 2)tana + 1)

m gtana
M (1+

t2
%) tan? o + 1

Similarly, the work done by the constraint force on the particle is

Wy = /Fx2d$2+/Fy2dy2
1

= :czt + Fyzygt

gtan o

_ 1 mgtana

2 ) tanZa + 1 (1+
1
2

- ((1+ )n‘ZZnQa—i-l) <<1

1 m(1+

1 mg? tan? o 9

t2
o) tan? o + 1

m gtam2 o

+7

M) (1+ 4) tan? o+ 1

%) g° tan® a 9

2[(1+ ™) tan®a +1]°
%292 tan® a 9

1
2[(1+ &) tan? a + 1]

2[(1+ 2) tan2a + 1]

)

(34)

We note that W1 +Ws, = 0, confirming the fact that the total work done on the system by the constraint
forces in time t is zero. This is consistent with the fact that the constraint forces are internal to the

system, and the constraint G = 0 is independent of time.



3 Goldstein 13.4

The given Lagrangian density is

h2

-~ 8n2m

L

The Euler-Lagrange equation for 1 is

h . .
Vip - V™ + Vap™ih + T(W#J — )

)

6M< 8E> oL 0

00,0)) o
that is,
d (0L oL oL
—|—=+V | m=—=]—5=0
dt <0¢) <5(V¢)> o
The derivatives are
m=2% _
o 471
d(oLy _ h
dt (ﬂb A
oL h? .
ave) — seEm VY
oL h2 2, %
v <a<w>> = s Y
a Vit —
Substituting into (37), we get
h 1k h‘2 2 gk * h ik
i Team Y VTV g =0
or
ih dyp h? _,
awdt - seem VYV
which is Schrodinger’s equation. The momentum canonically conjugate to v is
w9k
oY Ami
So, the Hamiltonian density is
H o= I +II"y" — L
= UM = oV VT = VY — U )
h2 * *
= VU VY - VY
mm

(35)

(36)

(37)



4 Problem 1

The equations of motion are

it+wlr = 0 (43)
j+aw’y = 0 (44)
Part a
The energy is
1 1
E= im(ﬂbZ +9°) + §mw2(952 + ay?) (45)
So,
dE
il m(id + gij) + mw?(zd + ayy)

= m(i(—w?z) + 9(—aw?y)) + mw?(zi + ayy) (using (43) and (44))
I (46)

Hence the energy is conserved.

Part b

% = m(ii — gj) + mw?(zd — ayy)
= m(i(—w?z) — Y(—aw?y)) + mw?(zi — ayy) (using (43) and (44))
=0 (47)

Hence A is conserved.

Part ¢

It can be shown that for a holonomic mechanical system, the kinetic energy is always a bilinear form
of the generalized coordinates, making terms of the form 0L/d¢ necessarily linear in the generalized
velocities, whenever the potential is independent of the (generalized) velocity. In particular, for the
given Lagrangian,

0L

5 = M (48)
OL .
% " my (49)

Since Q1 (z, y; €) and Q2(x, y; €) are point transformations, they are independent of velocities. Therefore
the quantity

OL 0@ OL 0Q2

r = — = X
or Oe |, 0Oy O0e | _, (50)

L]0
- e e:0+my e e=0 (51)

necessarily linear in the velocities, & and .



Part d

As justified above, any invariant quantity resulting from the symmetry of the Lagrangian under a
point transformation is necessarily linear in the velocities. Since A is a quadratic form in the veloc-
ities, we cannot find a point transformation which leaves the Lagrangian invariant and corresponds
to a Noetherian conserved current that is equal to A. This proves that while every invariance of
a Lagrangian under a continuous point transformation yields an associated conserved quantity, the
converse is not necessarily true.

For holonomic mechanical systems, the stronger statement is: For every invariance of a Lagrangian
under a continuous point transformation, there is an associated conserved quantity linear in the gen-
eralized momenta, and vice versa.

Part e
For a = 1, the system becomes an isotropic harmonic oscillator in 2D with the Lagrangian,
1 . . 1
L= §m($2 +9?) — §mw2(:v2 +4?) (52)
Due to rotational symmetry, the angular momentum

is an invariant, which is of the form I'. As J, is linear in the velocities, it cannot be written as a linear
combination of £ and A (which have no linear terms in & and ¢ at all).

5 Problem 2

Part a

The action is

S-/dtL-/dtde (54)

The Lagragian density is not explicitly dependent on the field, but only on its derivatives. So, the
variation in the action is

5S = 5/dtd:p£ (55)
— / dtda 6L (56)
— / dt dx ( (aéib) (D) + (gf¢)5(8x¢)) (57)
_ / dt dz <W5(a#¢)> for = 0,1 (58)

- / dt dz {a,i <(8f¢)6¢> — 0, < (af ¢)> 6¢] (59)
- - o (55 )5
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since the first term in (60) can be converted to a surface integral over the boundary of the (1 +
1)-spacetime region, where d¢p = 0 over the boundary. So, Hamilton’s principle 65 = 0 yields the
Euler-Lagrange equation

oL
9. ——— ) =0 61
(a9) oy
or
0 oL 0 oL
il _ | == = 2
5 (o05) * 5 (o) = © (02)
= (07 = PR)d(x,t) = 0 (63)
Part b
From the inverse Lorentz transformations,
t = 'y<t/—|—fac/> (64)
r = (2’4 Bet’) (65)
we have
00 _ 0o 0ado
o oot O ox
09 ¢
= 15 +1Be (66)
0 _ 0too  on oo
dz'  Ox' Ot Ox' Ox
_ 2899 09
¢ 8t+73x (67)

So, the Lagrangian density in the transformed frame is
¢ [<gf)2 e @fﬂ (68)
(@) e () i)
(E @) () )
ro-m (5) -eom (&)
[@f)? - <gfﬂ (7= 7) (69)

Hence the Lagrangian density is invariant under the Lorentz transformation.

N |

[ S
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Part ¢

Q
8

ox

drdt = ‘ % Y |dd dt’ (71)
oz’ ot
— ‘ % PYBC dl‘/ dt/
c

= 21— B dx at’
= da'dt (72)

So the volume element in (1 + 1)-spacetime is Lorentz invariant. Since the Lagrangian density is also
Lorentz invariant, therefore the action S = [ dtdx L is also a Lorentz invariant quantity.

Part d

The Euler-Lagrange equation is obtained by extremizing the action, i.e. via §S = 0. As L, the (1+1)-
spacetime volume element as well as the Lagrangian density £ are all Lorentz invariant quantities,

6S:6/dtd:c£:0<—>5s’:5/dt'dx’£’:0:55 (73)

Repeating the steps carried out in part (a) with all quantities replaced by their primed counterparts,
we arrive at the Euler Lagrange equation,

0 oL’ 0 oL’
|\t =0 (74)
ot \ 0(0p ¢) Ox' \ 0(059)
in the transformed frame. This proves that the Euler-Lagrange equations are form invariant, i.e. co-
variant.

In particular, using (67) and (68) we have

gjg = Y07 ¢ + 297 B + 77 B0 (75)

so that
R R (77)
_ ?;(225 _ 02‘31‘2 (78)

So, we conclude that the Euler-Lagrange equation is also invariant.



6 Problem 3

The modified action is

S =

[
- / m —q{<¢’—ﬁ>+(z4+vz\)-¢b
X

(
<L+quA >
wof,

to
—q/ dtVA -z

t1 t1
to

- S+g¢q dt%—q dz - VA
11 dt t1

to to
— S+gq / A — g / dA
t=t1 t=t1

= S

(79)
(80)
(81)
(82)
(83)

(84)

(85)

So, under a time dependent gauge transformation, the action is left invariant, independent of the path.



