
Theoretical Dynamics October 14, 2010

Homework 6

Instructor: Dr. Thomas Cohen Submitted by: Vivek Saxena

Problem 1

Part (a)

The equation of motion is

d

dτ
((m+ S)uµ) = ∂µS (1)

which can be rewritten as

d

dτ
(muµ) = ∂µS − d

dτ
(Suµ)

= ∂µS −
{
dS
dτ
uµ + S du

µ

dτ

}
= ∂µS − ∂αSuαuµ − S du

µ

dτ
(2)

where we have used the fact that dS/dτ = uµgµν∂
νS = uα∂

αS.

Part (b)

Multiplying both sides of the above equation by uµ we get

m
duµ

dτ
uµ = uµ∂

µS − ∂αSuαuµuµ − S du
µ

dτ
uµ

= uµ∂
µS − ∂αSuα − S du

µ

dτ
uµ (as uµuµ = 1)

which implies

(m+ S)
duµ

dτ
uµ = 0 (3)

As S is a space-time dependent scalar field, it is not identically equal to −m and hence this
implies

duµ

dτ
uµ = 0 (4)
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Part (c)

The action is

S =

∫
dτ(−m+ S) (5)

=

∫
dt
√

1− v2(−m+ S) (6)

=

∫
dtL (7)

So the Lagrangian is

L =
√

1− v2(−m+ S) (8)

For S << m and non-relativistic conditions,

L =
√

1− v2(−m+ S)

≈ −
(
m− m

2
v2 + S +O(v4)

)
(9)

≈ 1

2
m~̇x2 − S −m where ~̇x = v (10)

So the Lagrangian equals 1
2m~̇x

2−S up to an irrelevant constant −m, which does not affect
the equations of motion. The equations of motion in this regime are

∂

∂t

(
∂L

∂ẋi

)
=

∂L

∂xi

which, from equation (10), can be written as the vector equation,

m~̈x = −∇S (11)

Problem 2

S =

∫
dτ(−m+Aµu

µ) (12)

=

∫
dt
√

1− v2(−m+Aµu
µ) as dt = dτ/γ (13)

=

∫
dtL (14)

where
L =

√
1− v2(−m+Aµuµ) (15)

Now,

L =
√

1− v2(−m+Aµuµ)

= −m
√

1− v2 +
1

γ
(Aµgµνu

ν)

= −m
√

1− v2 +
1

γ
(Atγ −A · γv)

= −m
√

1− v2 +At −Ajvj (16)
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The Euler-Lagrange equations are

d

dt

(
∂L

∂ẋi

)
=

∂L

∂xi
(17)

=⇒ d

dt

(
mvi√
1− v2

−Ai
)

=
∂At
∂xi
− ∂Ai

∂xj
vj

=⇒ d

dt

(
mvi√
1− v2

)
=

dAi
dt

+
∂At
∂xi
− ∂Ai

∂xj
vj

=⇒ d

dt
(mui) =

∂Ai

∂t
+
∂Ai

∂xj
vj +

∂At
∂xi
− ∂Aj
∂xi

vj

=⇒ d

dτ
(mui) =

∂Ai

∂t
γ +

∂Ai

∂xj
γvj +

∂At
∂xi

γ − ∂Aj
∂xi

γvj

=⇒ d

dτ
(mui) =

(
∂Ai

∂t
γ +

∂Ai

∂xj
γvj

)
+

(
∂At
∂xi

γ − ∂Aj
∂xi

γvj

)
=⇒ d

dτ
(mui) =

∂Ai

∂xν
uν −

∂Aν

∂xi
uν (18)

=⇒ d

dτ
(mui) = (∂νAi − ∂iAν)uν (19)

So the equation of motion is

d

dτ
(muµ) =

(
∂Aµ
∂xν

− ∂Aν
∂xµ

)
uν (20)

Problem 3

Part (a)

For Aµ to transform as a 4-vector, we must have

Aµ −→ A′µ = LµνA
ν (21)

where Lµν is the Lorentz transformation. Now, under a gauge transformation,

Aµ −→ A′µ = Aµ + ∂µG (22)

So, under a gauge transformation, the field tensor Fµν is invariant, and hence the fields
(which are derivable from the field tensor) are also invariant:

F ′µν = ∂µA′ν − ∂νA′µ (23)

= ∂µ(Aν + ∂νG)− ∂ν(Aµ + ∂µG)

= ∂µAν − ∂νAµ + ∂ν∂µG− ∂ν∂µG
= ∂µAν − ∂νAµ

= Fµν (24)
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So, the invariance of the field tensor under a gauge transformation holds for arbitrary scalar
functions G which are (at least) twice differentiable in the space-time coordinates. Now, for
a gauge transformation to be similar to a Lorentz transformation for some G, we examine
the condition

LµνA
ν ?

= Aµ + ∂µG (25)

which implies

(Lµν − δµν)Aν
?
= ∂µG (26)

This implies that if G is chosen so as to satisfy this condition, then Aµ will transform as
a four vector under both the Lorentz transformation as well as the gauge transformation
(but for this particular G only). Clearly, since the choice of G is arbitrary in a gauge trans-
formation (and not related to Aµ), any other choice of G which does not satisfy equation
(26) will be a valid gauge transformation, but will not result in Aµ transforming like a
4-vector. In other words, since Aµ can always be gauge-transformed by arbitrary choices of
scalar functions G as in equation (22), it does not necessarily transform as a 4-vector under
Lorentz transformations.

Part (b)

The right hand side of the equation ∂µA
′µ = 0 is a scalar, so it is also Lorentz invariant. So,

the left hand side must be Lorentz invariant as well. This is only possible if the left hand
side transforms like the scalar product of two 4-vectors. We know that ∂µ is a four-vector
operator, that is, it is an operator which transforms like a covariant 4-vector under a Lorentz
transformation. Therefore, A′µ must transform like a 4-vector. (The regularizing conditions
|Aµ| → 0 as |x| → ∞ ensure that the fields are well behaved and the scalar product is well
defined, under the gauge transformation.)

Part (c)

The condition ∂µA
′µ = 0 implies ∂µA

µ = −∂µ∂µG. Given a vector potential Aµ in an
arbitrary gauge, it is always possible to solve this second order differential equation to find
a scalar function G. Then, the particular gauge choice A′µ = Aµ + ∂µG corresponds to A′µ

transforming like a 4-vector.

Part (d)

Uunder a gauge transformation, the field tensor Fµν is invariant:

F ′µν = ∂µA′ν − ∂νA′µ (27)

= ∂µ(Aν + ∂νG)− ∂ν(Aµ + ∂µG)

= ∂µAν − ∂νAµ + ∂ν∂µG− ∂ν∂µG
= ∂µAν − ∂νAµ

= Fµν (28)
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Part (e)

The field tensor is

Fµν = ∂µAν − ∂νAµ (29)

Under a Lorentz transformation,

Aµ −→ A′µ = ΛµνA
ν (30)

∂µ −→ ∂′µ = Λµν∂
ν (31)

So the Lorentz transformed field tensor is

F ′µν = ∂′µA′ν − ∂′νA′µ (32)

= ΛµαΛνβ∂
αAβ − ΛµαΛνβ∂

βAα (33)

= ΛµαΛνβ(∂αAβ − ∂βAα) (34)

= ΛµαΛνβF
αβ (35)

Part (f)

This is most easily seen by considering the action,

S =

∫
dτ(−m+ qAµuµ) (36)

This is the action integral that we started out with in problem 2 with the charge q factored
in. Using the result of problem 2, we get,

d

dτ
(muµ) = q

(
∂Aµ

∂xν
− ∂Aν
∂xµ

)
uν

= q (∂νA
µ − ∂µAν)uν

= q (∂νAµ − ∂µAν)uν (37)

= qFµνuν (38)

which is the required equation of motion.

Problem 4

Contracting both sides of the equation of motion with uµ we get

m
duµ

dτ
uµ = qFµνuνuµ (39)

= qF νµuνuµ

= −qFµνuνuµ
= 0 (40)

due to the antisymmetry of the field tensor Fµν . Therefore, since m 6= 0, we get duµ

dτ uµ = 0.
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Problem 5

Part (a)

∂0A
0 =

∂Φ

∂t
= 0 (41)

∂1A
1 =

∂(−E0t)

∂x
= 0 (42)

∂2A
2 =

∂(0)

∂y
= 0 (43)

∂3A
3 =

∂(0)

∂z
= 0 (44)

So, ∂µA
µ = 0.

Part (b)

Fµν = ∂µAν − ∂νAµ (45)

The field tensor has only two non-vanishing terms F 01 = −F 10 = −E0. So, the field tensor
is

Fµν =


0 −E0 0 0
E0 0 0 0
0 0 0 0
0 0 0 0

 (46)

The equation of motion is

duµ

dτ
=

q

m
Fµνuν (47)

Using the result of problem 4(d) of homework 5 (with g → qE0/m), the position is

x(t) =
m

qE0

[√
1 +

(
q2E2

0

m2

)
t2 − 1

]
(48)

Problem 6

Part (a)

The Green’s function in time domain can be written as

G(t, t′) = − 1

2π

∫ ∞
−∞

dω
eiω(t−t′)

(ω − iβ)2 + (β2 − ω2
0)

(49)

So the poles are at

ω1 = −
√
ω2

0 − β2 + iβ (50)

ω2 =
√
ω2

0 − β2 + iβ (51)

Assuming 0 < β < ω0, both poles lie in the upper half-plane.
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Case I: t > t′

In this case, the integral is evaluated in the upper half plane, picking up contributions from
both poles. This is because on the semicircular contour, |eiω(t−t′)| = e−Im(ω)(t−t′) is bounded
if Im(ω) > 0 (where Im denotes the imaginary part). Applying the residue theorem, we
get

G(t, t′) = − 1

2π
× 2πi

[
Res
ω=ω1

eiω(t−t′)

(ω − ω1)(ω − ω2)
+ Res

ω=ω2

eiω(t−t′)

(ω − ω1)(ω − ω2)

]
(52)

=
i

ω1 − ω2

(
eiω2(t−t′) − eiω1(t−t′)

)
= − i

2
√
ω2

0 − β2
e−β(t−t′)

(
ei
√
ω2
0−β2(t−t′) − e−i

√
ω2
0−β2(t−t′)

)
(53)

=
1√

ω2
0 − β2

e−β(t−t′) sin

(√
ω2

0 − β2(t− t′)
)

(54)

Case II: t < t′

In this case, on the semicircular contour, |eiω(t−t′)| = e−Im(ω)(t−t′) is bounded only if
Im(ω) < 0. So, the contour of integration must lie in the lower half plane. But the
lower half plane does not contain any poles of the integrand. So, the integral is zero for
t < t′. This is consistent with causality: the impulse input to the system comes at t = t′

and is zero for t < t′, so the response to this input cannot arrive before the input itself.

Combining the results, the Green’s function can be written as

G(t, t′) =
1√

ω2
0 − β2

e−β(t−t′) sin

(√
ω2

0 − β2(t− t′)
)
θ(t− t′) (55)

where θ(t− t′) denotes the Heaviside step function, defined by

θ(t− t′) =

{
1 for t > t′

0 for t < t′
(56)
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Part (b)

For the given forcing function, the particular solution is

xp(t) =

∫ ∞
−∞

dt′G(t, t′)f(t′) (57)

=

∫ ∞
−∞

dt′
1

ω1 − ω2

(
eiω2(t−t′) − eiω1(t−t′)

)
θ(t− t′)f0e

−Γt′θ(t′) (58)

=
if0 θ(t)

ω1 − ω2

∫ t

0
dt′
{
eiω2(t−t′)−Γt′ − eiω1(t−t′)−Γt′

}
(59)

=
if0 θ(t)

ω1 − ω2

(
eiω2t

∫ t

0
dt′ e−(Γ+iω2)t′ − eiω1t

∫ t

0
dt′ e−(Γ+iω1)t′

)
(60)

=
if0 θ(t)

ω1 − ω2

(
eiω2t 1− e

−(Γ+iω2)t

Γ + iω2
− eiω1t 1− e

−(Γ+iω1)t

Γ + iω1

)
(61)

=
if0 θ(t)

ω1 − ω2

(
eiω2t

Γ + iω2
− eiω1t

Γ + iω1
+

i(ω2 − ω1)

(Γ + iω1)(Γ + iω2)
e−Γt

)
(62)

The solution to the homogeneous equation is of the form

xh(t) = C1e
iω1t + C2e

iω2t = C1e
−i
√
ω2
0−β2te−βt + C2e

i
√
ω2
0−β2te−βt (63)

where C1 and C2 are constants to be fixed by boundary conditions. Therefore, the general
solution can be written as

x(t) = C1e
−i
√
ω2
0−β2te−βt + C2e

i
√
ω2
0−β2te−βt

+
if0 θ(t)

ω1 − ω2

(
ei
√
ω2
0−β2te−βt

Γ + iω2
− e−i

√
ω2
0−β2te−βt

Γ + iω1
+

i(ω2 − ω1)

(Γ + iω1)(Γ + iω2)
e−Γt

)
(64)

Note: The particular solution can also be obtained by noting that it equals the convolution of
the retarded Green’s function for the oscillator with the forcing function, and so, the Fourier
transform of the particular solution equals the product of the (phase shifted) frequency
domain Green’s function with the Fourier transform of the forcing function. The retarded
Green’s function can be obtained by Fourier transforming the differential equation of motion,
with the forcing function equal to the impulse.

Part (c)

For Γ >> ω0 >> β,

Γ + iω2 = Γ + i(
√
ω2

0 − β2 + iβ)

= (Γ− β) + i
√
ω2

0 − β2

≈ Γ + iω0 (65)

Γ + iω1 = Γ + i(−
√
ω2

0 − β2 + iβ)

= (Γ− β)− i
√
ω2

0 − β2

≈ Γ− iω0 (66)
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So, in this regime, the particular solution is

xp(t) =
if0 θ(t)

ω1 − ω2

(
ei
√
ω2
0−β2te−βt

Γ + iω2
− e−i

√
ω2
0−β2te−βt

Γ + iω1
+

i(ω2 − ω1)

(Γ + iω1)(Γ + iω2)
e−Γt

)

≈ if0 θ(t)

−2ω0

(
e−βt

[
e−iω0t

Γ + iω0
− eiω0t

Γ− iω0

]
+

2iω0

Γ2 + ω2
0

e−Γt

)
≈ if0 θ(t)

−2ω0

(
−2ie−βt

ω0 cos(ω0t) + Γ sin(ω0t)

Γ2 + ω2
0

+
2iω0

Γ2 + ω2
0

e−Γt

)
≈ if0 θ(t)

2ω0

(
2ie−βt

(
ω0 cos(ω0t) + Γ sin(ω0t)

Γ2 + ω2
0

)
− 2iω0

Γ2 + ω2
0

e−Γt

)
(67)

whereas the solution to the homogeneous equation is

xh(t) ≈
(
C1e

−iω0t + C2e
iω0t
)
e−βt (68)

Therefore, the general solution is

x(t) =
(
C1e

−iω0t + C2e
iω0t
)
e−βt +

if0 θ(t)

2ω0

(
2ie−βt

(
ω0 cos(ω0t) + Γ sin(ω0t)

Γ2 + ω2
0

)
− 2iω0

Γ2 + ω2
0

e−Γt

)
(69)

As Γ >> ω0 >> β, the third term in the general solution, which contains e−Γt, constitutes
the transient part which decays much faster than the other two terms which involve e−βt.
So after about 3-4 time constants of Γ, i.e. in about 3/Γ to 4/Γ time units, the general
solution is of the form

x(t) ≈
(
C1e

−iω0t + C2e
iω0t
)
e−βt +

if0 θ(t)

2ω0

[
2ie−βt

(
ω0 cos(ω0t) + Γ sin(ω0t)

Γ2 + ω2
0

)]
(70)

This bears the form of the general solution of an underdamped (β << ω0) harmonic os-
cillator with the forcing function being an impulse at t = 0. This is also evident if we
compare the particular solution in the regime Γ >> ω0 >> β with the Green’s function
G(t, t′) obtained in part (a), and observe that the expressions are similar in this regime, if
t′ = 0. The arrival of the input impulse at t = 0 is signatured by the appearance of θ(t) in
the second term of the general solution above.
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