
Theoretical Dynamics October 01, 2010

Homework 4

Instructor: Dr. Thomas Cohen Submitted by: Vivek Saxena

Goldstein 9.7

Part (a)

F1(q,Q, t) −→ F2(q, P, t)

−Pi =
∂F1

∂Qi
(1)

F2(q, P, t) = F1(q,Q, t) + PiQi (2)

F1(q,Q, t) −→ F3(p,Q, t)

pi =
∂F1

∂qi
(3)

F3(p,Q, t) = F1(q,Q, t)− piqi (4)

F1(q,Q, t) −→ F4(p, P, t)

pi =
∂F1

∂qi
(5)

Pi = −∂F1

∂Qi
(6)

F4(p, P, t) = F1(q,Q, t)− piqi + PiQi (7)

F2(q, P, t) −→ F3(p,Q, t)

pi =
∂F2

∂qi
(8)

Qi =
∂F2

∂Pi
(9)

F3(p,Q, t) = F2(q, P, t)− piqi − PiQi (10)

F2(q, P, t) −→ F4(p, P, t)

pi =
∂F2

∂qi
(11)

F4(p, P, t) = F2(q, P, t)− piqi (12)
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F3(p,Q, t) −→ F4(p, P, t)

Pi = −∂F3

∂Qi
(13)

F4(p, P, t) = F3(p,Q, t) + PiQi (14)

Part (b)

For an identity transformation, F2 = qiPi and by equation (7), the type 4 generating
function is

F4(p, P, t) = F2(q, P, t)− piqi (15)

= qiPi − piqi

= 0 as pi =
∂F2

∂qi
= Pi

For an exchange transformation, F1 = qiQi and by equation (4), the type 3 generating
function is

F3(p,Q, t) = F1(q,Q, t)− piqi (16)

= qiQi − piqi

= 0 as pi =
∂F1

∂qi
= Qi (17)

Part (c)

Consider a type 2 generating function F2(q, P, t) of the old coordinates and the new mo-
menta, of the form

F2(q, P, t) = fi(q1, . . . , qn; t)Pi − g(q1, . . . , qn; t) (18)

where fi’s are a set of independent functions, and gi’s are differentiable functions of the old
coordinates and time. The new coordinates Qi are given by

Qi =
∂F2

∂Pi
= fi(q1, . . . , qn; t) (19)

In particular, the function
fi(q1, . . . , qn; t) = Rijqj (20)

where Rij is the (i, j)-th element of a N × N orthogonal matrix, generates an orthogonal
transformation of the coordinates. Now,

pj =
∂F2

∂qj
=
∂fi
∂qj

Pi −
∂g

∂qj
= RijPi −

∂g

∂qj
(21)

This equation can be written in matrix form, as

p =
∂f

∂q
P − ∂g

∂q
(22)
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where p denotes the N × 1 column vector (p1, . . . , pN )T , ∂g/∂q denotes the N × 1 column
vector (∂g/∂q1, . . . , ∂g/∂qn)T , and ∂f

∂q denotes the N ×N matrix with entries(
∂f

∂q

)
ij

=
∂fi
∂qj

= Rij (23)

From (22), the new momenta are given by

P =

(
∂f

∂q

)−1(
p+

∂g

∂q

)
(24)

= R−1

(
p+

∂g

∂q

)
(25)

= R−1 (p+ ∇qg) (26)

As R is an orthogonal matrix, RRT = RTR = I, so R−1 = RT is also an orthogonal
transformation.

This gives the required result: the new momenta are given by the orthogonal transformation
(R−1) of an n-dimensional vector (p + ∇qg), whose components are the old momenta (p)
plus a gradient in configuration space (∇qg).

Goldstein 9.25

Part (a)

The given Hamiltonian is

H =
1

2

(
1

q2
+ p2q4

)
(27)

The equation of motion for q is

q̇ =
∂H

∂p
= pq4 (28)

Part (b)

Suppose we let Q2 = 1/q2 and P 2 = p2q4. Then, Q = ±1/q and P = ±pq2. Now,

{Q,P} = {±1/q,±pq2}
= {q−1, pq2}
= {q−1, p}q2 + p{q−1, q2}

=

(
∂q−1

∂q

∂p

∂p
− ∂q−1

∂p

∂p

∂q

)
q2 + p× 0

=

(
− 1

q2

)
q2

= −1
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So, the signs on both Q and P cannot be identical. We take

Q = −1

q
(29)

P = pq2 (30)

which is a valid canonical transformation. This gives the Hamiltonian,

H(Q,P ) =
1

2
(P 2 +Q2) (31)

The equations of motion are

Q̇ =
∂H

∂P
= P (32)

Ṗ = −∂H
∂Q

= −Q (33)

So, Q̈ + Q = 0, the solution to which is of the form Q = A cos t + B sin t. This gives
P = Q̇ = B cos t−A sin t. Now,

q = − 1

Q
= −(A cos t+B sin t)−1 (34)

p = PQ2 = (B cos t−A sin t)(A cos t+B sin t)2 (35)

so,
q̇ = (A cos t+B sin t)−2(−A sin t+B cos t) (36)

and hence

pq4 = (B cos t−A sin t)(A cos t+B sin t)2(A cos t+B sin t)−4 = (B cos t−A sin t)(A cos t+B sin t)−2 = q̇
(37)

So, the solution to the transformed equation for Q satisfies the original equation of motion
for q.

Problem 1

Part (a)

{X,Px} = {x+ ε, px}
= {x, px}
= 1 (38)

{Y, Py} = {y, px}
= 1 (39)
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{Z,Pz} = {z, pz}
= 1 (40)

{X,Py} = {X,Pz} = {Y, Px} = {Y, Pz} = {Z,Px} = {Z,Py} = 0 (41)

{X,X} = {Y, Y } = {Z,Z} = {Px, Px} = {Py, Pz} = {Pz, Pz} = {Px, Py} = {Py, Pz} = {Pz, Px} = 0
(42)

So, this is a canonical transformation. It corresponds to a translated canonical coordinate
system (translation along the x-direction in phase space).

dX

dε
= [X,Px] = 1 (43)

So Px is the generator of the canonical transformation.

Part (b)

{X,Px} = {x cos ε+ y sin ε, px cos ε+ py sin ε}
= cos2 ε{x, px}+ sin2{y, py}
= 1 (44)

{Y, Py} = {−x sin ε+ y cos ε,−px sin ε+ py cos ε}
= sin2 ε{x, px}+ cos2 ε{y, py}
= 1 (45)

{Z,Pz} = {z, pz}
= 1 (46)

Using properties of the Poisson Bracket, we also have

{X,Py} = {X,Pz} = {Y, Px} = {Y, Pz} = {Z,Px} = {Z,Py} = 0 (47)

{X,X} = {Y, Y } = {Z,Z} = {Px, Px} = {Py, Pz} = {Pz, Pz} = {Px, Py} = {Py, Pz} = {Pz, Px} = 0
(48)

So, this is a canonical transformation. It corresponds to a rotation about the z-axis in phase
space.

dX

dε
= −x sin ε+ y cos ε (49)

whereas
{X,Lz} = {x cos ε+ y sin ε, xpy − ypx} = x sin ε− y cos ε (50)

So,
dX

dε
= {X,−Lz} (51)

Therefore, −Lz is the generator of the canonical transformation.
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Part (c)

{X,Px} = {x, px + ε}
= 1 (52)

{Y, Py} = {y, py}
= 1 (53)

{Z,Pz} = {z, pz}
= 1 (54)

Using properties of the Poisson Bracket, we also have

{X,Py} = {X,Pz} = {Y, Px} = {Y, Pz} = {Z,Px} = {Z,Py} = 0 (55)

{X,X} = {Y, Y } = {Z,Z} = {Px, Px} = {Py, Pz} = {Pz, Pz} = {Px, Py} = {Py, Pz} = {Pz, Px} = 0
(56)

So, this is a canonical transformation. It corresponds to a translation along the px direction
in phase space. Now,

{Px,−X} = −
(
∂Px
∂qi

∂X

∂pi
− ∂Px
∂pi

∂X

∂qi

)
= 1 =

dPx
dε

(57)

Therefore, −X is the generator of the canonical transformation.

Part (d)

{X,Px} = {(1 + ε)x, (1 + ε)−1px}
= 1 (58)

{Y, Py} = {(1 + ε)y, (1 + ε)−1py}
= 1 (59)

{Z,Pz} = {(1 + ε)z, (1 + ε)−1pz}
= 1 (60)

Using properties of the Poisson Bracket, we also have

{X,Py} = {X,Pz} = {Y, Px} = {Y, Pz} = {Z,Px} = {Z,Py} = 0 (61)

{X,X} = {Y, Y } = {Z,Z} = {Px, Px} = {Py, Pz} = {Pz, Pz} = {Px, Py} = {Py, Pz} = {Pz, Px} = 0
(62)
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So, this is a canonical transformation. It is a scaling transformation, which preserves the
volume element in phase space. Suppose g is the generator of the scaling transformation.
Then,

∂X

∂ε
= x = [X, g] = [(1 + ε)x, g] (63)

which implies
x

1 + ε
= [x, g] =

∂x

∂x

∂g

∂px
− ∂x

∂px

∂g

∂x
(64)

that is,
x

1 + ε
=

∂g

∂px
(65)

the solution to which is
g =

xpx
1 + ε

+ f(y, z, py, pz) (66)

As dY/dε = y = [(1 + ε)y, g] and dZ/dε = z = [(1 + ε)z, g], following a similar argument for
Y and Z (or by symmetry) we get

g =
xpx

1 + ε
+

ypy
1 + ε

+
zpz

1 + ε
+ constant (67)

as the generator of the scaling transformation.

Problem 2

As η is a canonical transformation, we have

∂ηi
∂ε

= {ηi, g} (68)

So,

∂H

∂ε
=

∂H

∂ηi

∂ηi
∂ε

=
∂H

∂ηi
{ηi, g}

=
∂H

∂ηi

∂ηi
∂ξj

Jjk
∂g

∂ξk
(as ξ is a canonical transformation)

=
∂H

∂ηi

∂ηi
∂ηj

Jjk
∂g

∂ηk
(as Poisson Brackets are invariant under canonical transformations)

=
∂H

∂ηi
δijJjk

∂g

∂ηk

=
∂H

∂ηi
Jij

∂g

∂ηj

= {H, g}
= −ġ (69)

But since H is conserved, ∂H
∂ε = 0 and hence ġ = 0. Therefore, g is conserved.
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Problem 3

The quantity ∆, which was found to be an invariant of the system, can be expressed in
terms of the canonical coordinates x, y, px, py as

∆(x, y, px, py) =
1

2m
(p2x − p2y) +

1

2
mω2(x2 − αy2) (70)

As ∆ is the conserved generator of a family of canonical transformations parametrized by
an infinitesimal parameter ε, we must have

δx = ε{x,∆} (71)

δy = ε{y,∆} (72)

δpx = ε{px,∆} (73)

δpy = ε{px,∆} (74)

(75)

We consider each condition separately below.

δx = ε{x,∆}

= ε{x, 1

2m
(p2x − p2y) +

1

2
mω2(x2 − αy2)}

= ε{x, p
2
x

2m
}

=
εpx
m

(76)

δy = ε{y,∆}

= ε{y, 1

2m
(p2x − p2y) +

1

2
mω2(x2 − αy2)}

= ε{y,−
p2y
2m
}

= −εpy
m

(77)

δpx = ε{px,∆}

= ε{px,
1

2m
(p2x − p2y) +

1

2
mω2(x2 − αy2)}

= ε{px,
1

2
mω2x2}

= −εmω2x (78)

δpy = ε{py,∆}

= ε{py,
1

2m
(p2x − p2y) +

1

2
mω2(x2 − αy2)}

= ε{py,−
1

2
mω2αy2}

= εmω2αy (79)
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Now, let ε = δθ where θ is a parameter. Then, the above equations become

dx

dθ
=

px
m

(80)

dy

dθ
= −py

m
(81)

dpx
dθ

= −mω2x (82)

dpy
dθ

= mω2αy (83)

So,

d2x

dθ2
+ ω2x = 0 (84)

d2y

dθ2
+ ω2αy = 0 (85)

The solutions to which are

x = A cos(ωθ) +B sin(ωθ) (86)

y = C cos(ω
√
αθ) +D sin(ω

√
αθ) (87)

and correspondingly

px = −mωA sin(ωθ) +mωB cos(ωθ) (88)

py = mω
√
αC sin(ω

√
αθ)−mω

√
αD cos(ω

√
αθ) (89)

Using the subscript 0 to denote the “initial” coordinates and momenta, we have

x0 = A (90)

y0 = C (91)

px0 = mωB (92)

py0 = −mω
√
αD (93)

So,

x = x0 cos(ωθ) +
px0
mω

sin(ωθ)

y = y0 cos(ω
√
θ)−

py0
mω
√
α

sin(ω
√
αθ)

px = −mωx0 sin(ωθ) + px0 cos(ωθ)

py = mω
√
αy0 sin(ω

√
αθ) + py0 cos(ω

√
αθ)

Reverting to the notation in which x0, px0, y0, py0 denote the original coordinates and
X,Y, Px, Py denote the canonically transformed coordinates, we get the form of the canon-
ical transformation as

X = x cos(ωθ) +
px
mω

sin(ωθ) (94)

Px = px cos(ωθ)−mωx sin(ωθ) (95)

Y = y cos(ω
√
αθ)− py

mω
√
α

sin(ω
√
αθ) (96)

Py = py cos(ω
√
αθ) +mω

√
αy sin(ω

√
αθ) (97)
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where θ is an arbitrary parameter, such that θ = 0 corresponds to the untransformed coor-
dinates. This canonical transformation is composed of two rotations in the 4-dimensional
phase space (one involving X and Px and the other involving Y and Py), and its generator
is the conserved quantity ∆.

Problem 4

Part (a)

F2(q, P, t) =

(
q +

1

2
gt2

)
(P −mgt)− P 2t

2m
(98)

Now,

p =
∂F2

∂q
= P −mgt (99)

Q =
∂F2

∂P
= q +

1

2
gt2 − Pt

m
= q +

1

2
gt2 − pt

m
− gt2 (100)

So, the canonical transformation is

P = p+mgt (101)

Q = q − pt

m
− 1

2
gt2 (102)

Part (b)

{Q,Q} = {q − pt

m
− 1

2
gt2, q − pt

m
− 1

2
gt2} = 0 (103)

{P, P} = {p+mgt, p+mgt} = 0 (104)

{Q,P} = {q − pt

m
− 1

2
gt2, p+mgt}

=
∂Q

∂q

∂P

∂p
− ∂Q

∂p

∂P

∂q

= (1)(1)−
(
− t

m

)
(0)

= 1 (105)

So, the transformation satisfies the canonical Poisson Bracket relations.

Part (c)

The Lagrangian is

L(q, q̇) =
1

2
mq̇2 −mgq (106)
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The canonical momentum is

p =
∂L

∂q̇

= mq̇ (107)

So the Hamiltonian is

H = pq̇ − L

=
p2

2m
+mgq (108)

Now, Q = q − pt
m −

1
2gt

2, so

{Q,H} =

{
q − pt

m
− 1

2
gt2,

p2

2m
+mgq

}
=

{
q,
p2

2m

}
−
{
pt

m
,mgq

}
=

1

2m
{q, p2} − gt{p, q}

=
p

m
+ gt (109)

Also
∂Q

∂t
= − p

m
− gt (110)

So,
dQ

dt
=
∂Q

∂t
+ {Q,H} = 0 (111)

Also, P = p+mgt, so

{P,H} = {p+mgt,
p2

2m
+mgq}

= mg{p, q}
= −mg (112)

and

∂P

∂t
= mg (113)

So,
dP

dt
=
∂P

∂t
+ {P,H} = 0 (114)
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Part (d)

∂F2

∂t
= gt(P −mgt) +

(
q +

1

2
gt2

)
(−mg)− P 2

2m

= Pgt− 3

2
mg2t2 −mgq − P 2

2m

= (p+mgt)gt− 3

2
mg2t2 −mgq − (p+mgt)2

2m

= − p2

2m
−mgq −mg2t2 (115)

So, the Hamiltonian associated with Q, P is

K = H +
∂F2

∂t

=
p2

2m
+mgq − p2

2m
−mgq −mg2t2

= −mg2t2 (116)

So, the Hamiltonian K is zero up to time-dependent constant term −mg2t2, but it is not a
function of P and Q (which are constant with time, since {Q,H} = {P,H} = 0 as shown
above).

Part (e)

Q and P are conserved quantities, that equal the initial position and the initial momentum
respectively. They are constant with time, as q and p vary:

q(t = 0) = Q

p(t = 0) = P

Part (f)

∂F2

∂q
= P −mgt = p (117)

∂F2

∂t
= Pgt− mg2t2

2
−mgq − P 2

2m
(118)

H =
p2

2m
+mgq

=
1

2m

(
∂F2

∂q

)2

+mgq (119)

So,

K = H +
∂F2

∂t
= −mg2t2 (as shown in part d)
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implies

H

(
q,
∂F2

∂q

)
+
∂F2

∂t
= −mg2t2 (120)

So, the Hamilton-Jacobi equation is satisfied, except for a time-dependent constant term
appearing on the right hand side.

Part (g)

f(Q,P, t) = F2(q(Q,P, t), P, t)

=

(
q +

1

2
gt2

)
(P −mgt)− P 2t

2m

=

(
Q+

pt

m
+ gt2

)
(P −mgt)− P 2t

2m

=

(
Q+

(P −mgt)t
m

+ gt2
)

(P −mgt)− P 2t

2m

=

(
Q+

Pt

m

)
(P −mgt)− P 2t

2m

= QP +
P 2t

2m
−Qmgt− gP t2 (121)

So,

∂f

∂t
=
P 2

2m
−mgQ− 2Pgt (122)

Also, p = mq̇ = P −mgt. So,

L(q, q̇) =
p2

2m
−mgq

=
1

2m
(P −mgt)2 −mg

(
Q+

Pt

m
− 1

2
gt2

)
=

1

2m
(P 2 +m2g2t2 − 2Pmgt)−mgQ− Pgt+

1

2
mg2t2

=
P 2

2m
− 2Pgt−mgQ+mg2t2

=
∂f(Q,P, t)

∂t
+mg2t2 (123)

So, L(q(Q,P, t), q̇(Q,P, t)) = ∂f(Q,P,t)
∂t up to a time-dependent term mg2t2.

Problem 5

The Hamilton-Jacobi equation, as expressed in the form

H(q,∇S(q,P )) +
∂S(q, P )

∂t
= 0 (124)
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was obtained by constructing a generating function of the form

F = F2(q, P, t)−QiPi

where F2 denotes a generic type-2 generating function. For such a choice of F , the Hamil-
tonian K = H + ∂F

∂t is zero.

Now, consider a type-3 generating function F3 of the old momenta and the new coordi-
nates, such that the Hamiltonian K is zero. Therefore,

Q̇i =
∂K

∂Pi
= 0 (125)

Ṗi = − ∂K
∂Qi

= 0 (126)

Now,

qi = −∂F3

∂pi
= −(∇pF3)i (127)

so,

H(q(Q, p), p, t) +
∂F3

∂t
(Q,p, t) = 0 (128)

where the old coordinates q have been expressed in terms of the old momenta and the new
coordinates using equation (127). This is a PDE in (n + 1) variables p1, . . . , pn, t. Let S̃
denote the solution of this PDE. Then, a solution of the form,

F3 ≡ S̃ = S̃(p1, . . . , pn;α1, . . . , αn+1; t) (129)

where Qi = αi are the constants of motion (for i = 1, . . . , n), is consistent with equa-
tion (125). Here the constant αn+1 must be a constant of integration, so the physically
meaningful solution is of the form

S̃ = S̃(p1, . . . , pn;α1, . . . αn; t) (130)

So, in terms of S̃, equation (128) can be written as

H(−∇pS̃,p, t) +
∂S̃

∂t
(Q,p, t) = 0 (131)

which is of the desired form.
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