Theoretical Dynamics

Homework 4

Instructor: Dr. Thomas Cohen

October 01, 2010

Submitted by: Vivek Sazrena

Goldstein 9.7

Part (a)
Fl(Q7Q7t) — Fg(q,P,t)

Fl(anvt) — F3(paQat)

Fl(q7Q7t) — F4(p7P7t>

F2(Q7P7t)

Di
F3(p7 Qv t)

bi =

P =

F4(p7P7t) =

FQ(Q7P7t) — F3(p7Q7t)

pi =

Q =

FS(pv Qvt) =

FZ(q>Pat) —>F4(p’Pat)

bi
F4(p7 Pv t)

o
0Q;

o
0q;
= Fi(q,Q,t) — pigi

0F1

0q;
8F1

- 0Qi

o0k,
9q;
o0F,
0P,

Fy(q, P,t) — pigi — PiQ;

oy
3%’
= Fy(q,Pt) — pig;
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FS(p7Q7t) — F4(p,P,t>

OF3
P o= - 1
20, (13)

Part (b)

For an identity transformation, F» = ¢;P; and by equation (7), the type 4 generating
function is

F4(p7 Pa t) = F2(Q7Pa t) — Diq; (15)
= ¢F;—pig
oF:
= 0 as p; = 2 P
dq;

For an exchange transformation, F; = ¢;@Q; and by equation (4), the type 3 generating
function is

F3(p7Q7t) = Fl(QaQat) — Piqi (16)
= qiQi — pigi
= 0 as p; = aaz;l = Qz (17)

Part (c)

Consider a type 2 generating function Fy(q, P,t) of the old coordinates and the new mo-
menta, of the form

F2(q7pat) - fl(qlu . 7Q7L7t)PZ _g(QIv" . >Qn7t) (18)

where f;’s are a set of independent functions, and g;’s are differentiable functions of the old
coordinates and time. The new coordinates (); are given by

OF:
In particular, the function
filar, -+ qn;t) = Rijq; (20)

where R;; is the (i,j)-th element of a N x N orthogonal matrix, generates an orthogonal
transformation of the coordinates. Now,

_OF  0fi, Oy dg

pj=—=—= P—-—==R;;P,— — 21
T 0q;  9q; " 0 ' 0g; 2!
This equation can be written in matrix form, as
of 9y
— pP— 22
P=5.F " 54 (22)
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where p denotes the N x 1 column vector (py,...,pn)", Og/0q denotes the N x 1 column

vector (0g/dq1, . ..,09/9q,)T, and g% denotes the N x N matrix with entries
0 afi
dq ij an
From (22), the new momenta are given by
af\ " g
P = |—= —=
(3q> (p " ag

_ dg
_ 1 99
=R (p " 3q>

= R! (p+ ng)

(23)

(24)

(25)

(26)

As R is an orthogonal matrix, RR’ = RTR = I, so R™' = R is also an orthogonal

transformation.

This gives the required result: the new momenta are given by the orthogonal transformation
(R™!) of an n-dimensional vector (p + V4g), whose components are the old momenta (p)

plus a gradient in configuration space (Vg4g).

Goldstein 9.25

Part (a)

The given Hamiltonian is

The equation of motion for ¢ is

Part (b)

Suppose we let Q? = 1/¢? and P? = p?¢*. Then, Q = +1/q and P = +pg>. Now,

{Q. P} = {£1/q +pq*}
(¢, pg?}
= {¢ "o} +p{a " ¢}

(8¢ top 9qtop\ ,
a <3q o op ag) T P!

- (3)e

= -1




So, the signs on both @ and P cannot be identical. We take

1
Q= - (20)
P = pg (30)

which is a valid canonical transformation. This gives the Hamiltonian,

1
H(Q.P) = 5(P*+Q?) (1)
The equations of motion are
OH
= 5p P (32)
OH
= 550 (33)

So, Q + @ = 0, the solution to which is of the form ) = Acost + Bsint. This gives
P =(Q = Bcost — Asint. Now,

1

qg = o —(Acost + Bsint)™! (34)
p = PQ*=(Bcost— Asint)(Acost + Bsint)? (35)
S0,
= (Acost + Bsint) ?(—Asint + Bcost) (36)
and hence

pq* = (Bcost—Asint)(Acost+Bsint)*(Acost+Bsint) ™ = (Bcost—Asint)(Acost+Bsint) 2 = ¢
(37)

So, the solution to the transformed equation for @) satisfies the original equation of motion

for q.

Problem 1
Part (a)

{X,P,} = {z+¢ps}

Il
—
v&
=3
)
—

Y,P} = {y,p:}



{Z7PZ} = {ZapZ}

| (40)
{X,Py}:{X,PZ}:{pr}:{KPZ}:{Z,P:E}:{Z,P:U}:O (41)

{X7X}:{Yvy}:{Z7Z}:{anPx}:{Py7Pz}:{PZaPz}:{PﬂcaPy}:{Pyﬂpz}:{Pme}:O
(42)

So, this is a canonical transformation. It corresponds to a translated canonical coordinate
system (translation along the z-direction in phase space).

Y xp=a (43)

So P, is the generator of the canonical transformation.

Part (b)
{X,P,} = {xcose+ysine, p,cose+ pysine}
= cos?e{z,p,} +sin?{y,p,}
=1 (44)
{Y,P,} = {—xsine+ycose, —pysine+ p,cose}
= sin®e{z, p,} + cos® e{y, py}
1 (45)

{Z?PZ} = {Z,pz}
= 1 (46)

Using properties of the Poisson Bracket, we also have
{X,P)} ={X,P.} ={Y, P} ={Y,P.} ={Z,P,} ={Z,P,} =0 (47)

{(X, X} =AY, Y} ={2,Z} ={Pe, P} ={P, .} ={P., P.} ={Po, B} ={Py, P.} ={P:, P} = 0
(48)

So, this is a canonical transformation. It corresponds to a rotation about the z-axis in phase

space.

dX
2 = —xsine+ ycose (49)
whereas
{X,L.} ={xcose+ysine,xp, — yp,} = xsine — ycose (50)
So,
dX
2 _ix -1 51
B x-L) (51)

Therefore, — L, is the generator of the canonical transformation.

4-5



Part (c)

{X’Px} = {:E,px—i-e}
- (52)

{Yva} = {y7py}
=1 (53)

{Z7PZ} = {Z?pZ}
- (54)

Using properties of the Poisson Bracket, we also have
{X,P)} ={X,P.} ={Y, P} ={Y,P.} ={Z,P,} ={Z,P,} =0 (55)

{X7X} = {Y,Y} = {Z7Z} = {PCC7P$} = {Py7PZ} = {PzaPz} = {P:Capy} = {PyaPz} = {P27P;B} =0
(56)

So, this is a canonical transformation. It corresponds to a translation along the p, direction

in phase space. Now,

0P, 0X O0P,0X dP,
P,—X}=- — =1= 57
{ J <8Qi Opi  Opi 5%‘) de 57)
Therefore, — X is the generator of the canonical transformation.
Part (d)
(X, P} = {(1+oz,(1+¢) 'p}
=1 (58)
{V.P} = {(1+ey.(1+e) 'py}
=1 (59)
{Z7 PZ} = {(1 + 6>27 (1 + 6)71pz}
=1 (60)
Using properties of the Poisson Bracket, we also have
{X,P)} ={X, P} ={Y, P} ={Y, P.} ={Z, .} ={Z,P,} = 0 (61)

{X’X}:{YvY}:{Z’Z}:{anPx}:{Py7Pz}:{Pz7Pz}:{anpy}:{Pyﬂpz}:{PhPx}:O
(62)



So, this is a canonical transformation. It is a scaling transformation, which preserves the

volume element in phase space. Suppose g is the generator of the scaling transformation.
Then,

0X
which implies
x dx Jg dx Jg
= = — f— _— 4
1+e [ 9] O0x Op,  Opy Ox (64)
that is,
T dg
= 65
1+e¢ Op, (65)
the solution to which is p
g = 1+6+f(yvzapyvpz) (66)

As dY/de =y =[(1+€)y,g] and dZ/de = z = [(1 + €)z, g], following a similar argument for
Y and Z (or by symmetry) we get

_ TPa YDy ZPz
1+e¢ 14+¢ 1+e¢

g + constant (67)

as the generator of the scaling transformation.

Problem 2
As n is a canonical transformation, we have
M
= {m, 68
1 — {9 (68)
So,
87[{ . OH ({9771‘
Je  On; Oe
0H
= 8777,;{772"9}
OH 8?72' 89 . . .
= ik as & is a canonical transformation
OH 0On; 0
= 29 jk—g (as Poisson Brackets are invariant under canonical transformations)
O Ong " On,
_ OHg ;99
— o T oy
_ oH, J9
on; " O,
= {H,9}
= - (69)

But since H is conserved, %—Ij = 0 and hence g = 0. Therefore, g is conserved.
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Problem 3

The quantity A, which was found to be an invariant of the system, can be expressed in
terms of the canonical coordinates x,y, p;, py as
1, 1

A,y paspy) = 57 = 1)) + 5me’(a” — ay?) (70)

As A is the conserved generator of a family of canonical transformations parametrized by
an infinitesimal parameter €, we must have

dr = ef{x,A} (71)
oy = e{y, A} (72)
0pr = €{ps, A} (73)
opy = e{pe, A} (74)
(75)
We consider each condition separately below.
ox = ez, A}
1 1
= ¢z, %(pi —pZ) + §mw2(x2 —ay?)}
2
_ Pz
- 6{377 2m}
Pz
~m (76)
oy = e{y, A}
1
= e{y, 5, (0% — py) + 5me’(@® — ay?)}
2
_ _ Py
- €{y7 Qm}
€p
= T (1)
0pz = E{pm A}
1 1
= e{ps, %(P;% - pf,) + imwQ(a:Q —ay®)}
1
= ¢{pa, imwQ:rQ}
= —emw’x (78)
opy = E{py, A}
1 1
= ¢{py, %(pi — pi) + imwQ(xz —ay?)}
1
= €e{py, —imw2ay2}
= emw’ay (79)



Now, let ¢ = 66 where 0 is a parameter. Then, the above equations become

So,

The solutions to which are

and correspondingly

Pz

Dy =

So,

Y

Dz
Py

dr e

e m

dy Py
do m
% = —mw’z
do

d

% = mw2ay
d*z 9
W—i—wx =0
d2

df;;/—i—cﬂay = 0

= Acos(wf) + Bsin(wf)
= Ccos(wvab) + D sin(w/ab)

—mwAsin(wh) + mwB cos(wb)
mw+y/aC sin(wy/ab) — mwy/aD cos(wy/ab)

Using the subscript 0 to denote the “initial” coordinates and momenta, we have

rg = A
Yo = C
Dz = mwDB
Dyy = —mwv/aD
pa:o

xg cos(wh) + o sin(wf)

_ Pyy .
Yo cos(wV0) /e sin(wy/af)
—mwzg sin(wl) + pgq cos(wh)

mw+/ayo sin(wy/ab) + py, cos(wv/ab)

Reverting to the notation in which wg,psg,yo,py, denote the original coordinates and
X,Y, P, P, denote the canonically transformed coordinates, we get the form of the canon-

ical transformation as

Pz .
0) + — 0
x cos(wl) + p sin(wf)
Pg cos(wh) — mwz sin(wb)

y cos(wy/af) — mc]j?i/a sin(w+v/af)

Py cos(wyv/ab) + mwy/ay sin(wy/ab)
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where 6 is an arbitrary parameter, such that § = 0 corresponds to the untransformed coor-
dinates. This canonical transformation is composed of two rotations in the 4-dimensional
phase space (one involving X and P, and the other involving Y and P,), and its generator

is the conserved quantity A.

Problem 4
Part (a)
1 P?t
Fy(q, P,t) = —gt? | (P — mgt) — —
2(q, P t) <q+29>( mgt) -
Now,
oF,
= ——=P-— t
p a4 mg
OF, 1, Pt 1, pt
Q ap — 1139 - =at59
So, the canonical transformation is
P = p+mgt
t 1
Q = ¢ = g
m 2
Part (b)
pt 1 5 pt 1 o
{Q,Q} {q s LT e 29}
{P,Py = {p+mgt,p+mgt}=0
t 1
{QP} = {a- 1~ Jg.p+mgt}
_ 9Qor 0oQor
~ 9q dp  9p dq

So, the transformation satisfies the canonical Poisson Bracket relations.

Part (c)

The Lagrangian is

(98)

(101)
(102)

(103)
(104)

(105)

(106)



The canonical momentum is

So the Hamiltonian is

Now, Q = q — %—%th, SO

{@Q,

Also

So,

Also, P = p + mgt, so

and

So,

oL
Po= 5
H = pg—L
2
_
= 2m+m9q
_foopt 1, P
H} = {q T 5dt 5+ mgg
_ p? pt
727 - —,mgq
m m
1 2
- — — gt
2m{q,p} gt{p,q}
= £+gt
m
9 __r_ 4,
ot m
dQ  0Q
Yo _ Y% H) =
p2
P H) = 2
{P,H} {p+mg,2m+mgq}
mg{p, q}
= —mg
or _
ot Y
dP 9P
T L IPHY=0
dt 8t+{’ }

(107)

(108)

(109)

(110)

(111)

(112)

(113)

(114)



Part (d)

OF, 1, P?
=2 = gi(P—mgt Zgt* ) (=mg) — —
5 gt( mg)+<a+2g>(mg) 5
3 p?
= Pgt— —mg*t®> —mgq — —
2 2m
3 p 4+ mgt)?
= (p+mgt)gt — Smg*? — mgg — . )
2 2m
P2
= 5 T Mgq— mg>t? (115)
So, the Hamiltonian associated with Q, P is
OF
K = H+—/
"o
2 2
= 2 pmgq— 2~ mgq — mg?e?
2m 2m
= —mg*t? (116)

So, the Hamiltonian K is zero up to time-dependent constant term —mg?t2, but it is not a
function of P and @ (which are constant with time, since {Q, H} = {P,H} = 0 as shown

above).

Part (e)

Q@ and P are conserved quantities, that equal the initial position and the initial momentum
respectively. They are constant with time, as ¢ and p vary:

q(t=0) = @
pt=0) = P
Part (f)
OF,
2 — P_magt= 117
9 mgt = p (117)
0F, mg>t? p?
2 — Pgt— - - — 11
5 g 5 T MYq— 5 (118)
P2
H = -—4mgq
2m
1 (OF)\?
_ 1 (ok 119
2m<aq> +mgq (119)
So,
OF:
K = H+ 22 = _—mg* (as shown in part d)



implies

H — - = - t 12

So, the Hamilton-Jacobi equation is satisfied, except for a time-dependent constant term
appearing on the right hand side.

Part (g)
f(Q7Pat) = Fg(q(Q,Pﬂf),P,t)
1, Pt
= Zgt?> ) (P — mgt) — —
(q+29 )( mgt) — 5 —
t Pt
= <Q+p+gt2> (P—mgt)——
m 2m
P —mgt)t P2t
_ (Q+<mg>+gt2> (P — mgt) — L
m 2m
Pt Pt
<Q+ m) (P —mgt) — o
P2t
= QP+ 5 Qmgt — gPt? (121)
m
So,
0 P2
Also, p =mq¢ = P — mgt. So,
2
. p
L - 2
(¢,9) 5 94
= %(P mgt)® —mg (Q + ooy §9t )
1 1
= %(P2 + m?g*t? — 2Pmgt) — mgQ — Pgt + §mg2t2

p? 2,2
= — —2Pgt —mgQ + mg“t
2m

_of (%,t Pt) + mg#? (123)

So, L(q(Q, P,t),4(Q, P,t)) = W up to a time-dependent term mg?t.

Problem 5
The Hamilton-Jacobi equation, as expressed in the form
0S(q, P
1(q.v8(q.P)) + Z0P) (124)
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was obtained by constructing a generating function of the form
F = FQ(q')Put) _QZP’L

where F5 denotes a generic type-2 generating function. For such a choice of F', the Hamil-
tonian K = H + %“ is zero.

Now, consider a type-3 generating function F3 of the old momenta and the new coordi-
nates, such that the Hamiltonian K is zero. Therefore,

: 0K
Q; = oP, =0 (125)
. 0K
P, = —8@_0 (126)
Now,
OF.
G = — (9pj = —(V,F); (127)
S0,
OF.
H(a(Q.p).p 1) + 5 (Q.p1) =0 (128)

where the old coordinates ¢ have been expressed in terms of the old momenta and the new
coordinates using equation (127). This is a PDE in (n + 1) variables py,...,pn,t. Let S
denote the solution of this PDE. Then, a solution of the form,

F3ESZg(pl,...,pn;al,...,an+1;t) (129)

where @QQ; = «; are the constants of motion (for ¢ = 1,...,n), is consistent with equa-
tion (125). Here the constant a,y; must be a constant of integration, so the physically
meaningful solution is of the form

gzS(pl,...,pn;al,...an;t) (130)
So, in terms of S, equation (128) can be written as
. 08

which is of the desired form.



