Physics 601 Homework 10---Due Friday November 12

- 1. This problem concerns rotations about the z axis.
- a. Show that the rotation about the z axis: $\vec{R} = \begin{pmatrix} \cos(\theta) & \sin(\theta) & 0 \\ -\sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix}$ can be written as $\vec{R} = \exp(-\theta M_z)$ where $M^z = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

 b. Show that $\cos(2\theta) = 14.75$
 - b. Show that $\cos(\vartheta) = \frac{1}{2} \operatorname{tr}(\vec{R}) \frac{1}{2}$
- 2. There is a general theorem by Euler that any rotation matrix can be represented as a rotation about one given axis. Thus by analogy to problem 3a. it can be written

as
$$\vec{R} = \exp\left(-\Phi\hat{n}\cdot\vec{M}\right) = \exp\left(-\Phi\left(n_x\vec{M}_x + n_y\vec{M}_y + n_z\vec{M}_z\right)\right)$$
 where $\hat{n} = \begin{pmatrix} n_x \\ n_y \\ n_z \end{pmatrix}$ is the unit

vector specify the axis of rotation and Φ is the angle specifying the rotation. The purpose of this problem is to find the explicit of the rotation matrix for such a rotation. As a first step note that \hat{n} is completely specified by a polar angle θ and azimuthal angle ϕ . Define $\ddot{R}_{\hat{n}} \equiv \ddot{R}_{z}(\phi)\ddot{R}_{v}(\theta)$.

- a. As a first step show that $\hat{n} \cdot \vec{M} = \vec{R}_{\hat{n}} \vec{M}_{\hat{r}} \vec{R}_{\hat{n}}^T$.
- b. Show that $\vec{R} = \exp(-\Phi \hat{n} \cdot \vec{\vec{M}}) = \vec{R}_{\hat{n}} \exp(-\Phi \vec{M}^z) \vec{R}_{\hat{n}}^T$
- c. Express the nine matrix elements of R in terms of the polar and azimuthal angles defining \hat{n} and the rotation angle Φ .

Not that this description of the rotation matrices is alternative parameterization to the Euler angles.

- 3. For the general rotation of the form given in 2:
 - a. Show that \hat{n} is an eignevector of \vec{R} with eigenvalue one.
 - b. Show that $\cos(\Phi) = \frac{1}{2} \operatorname{Tr}(\vec{R}) \frac{1}{2}$.
- 4. Suppose we have a rotation specified by the Euler angles $\left(\frac{\pi}{3}, \frac{\pi}{3}, \frac{\pi}{3}\right)$ (that is $\vec{R} = \vec{R}_z \left(\frac{\pi}{3}\right) \vec{R}_x \left(\frac{\pi}{3}\right) \vec{R}_z \left(\frac{\pi}{3}\right)$) . Find the angle of rotation about the single axis and the axis