Physics 601 Homework 8---Due Friday November 5

- 1. Consider a two-body system with reduced mass μ and a potential of the form $V = -ar^{-k}$ for a,k > 0 (a,k real).
 - a. Show that circular orbits exist for any $k \ne 2$ and find the relationship between the radius r_0 and L.
 - b. Linearize the equation of motion for r around r_0 and
 - i. Show that stable orbits only exist for k < 2
 - ii. Find the oscillation frequency for fluctuations in r for k < 2.
 - iii. Find the values of k for which the orbits close.
- 2. Consider a two-body system with reduced mass μ and a potential of the form $V = ar^k$ for a, k > 0 (a, k real).
 - a. Show that circular orbits exist for any k and find the relationship between the radius r_0 and L.
 - b. Linearize the equation of motion for r around r_0 and
 - i. Find the oscillation frequency for fluctuations in *r*.
 - ii. Find the values of k for which the orbits close.
- 3. For the by the Hamiltonian $H = \frac{\vec{p}^2}{2\mu} \frac{k}{r^2}$ with k>0 (that is an attractive Coulomb or gravitational system) show that
 - a. The Runge-Lenz vector defined by $\vec{A} = \vec{p} \times \vec{L} \alpha \mu \hat{r}$ (where $\hat{r} = \vec{x}/r$) satisfies $[\vec{A}, H]_{PB} = 0$. Do this by explicit evaluation of the Poisson bracket. This means \vec{A} is conserved
 - b. The Runge-Lenz vector is in the plane of the orbit
- 4. Show by explicit evaluation that
 - a. $[A_x, L_y]_{PB} = A_z$
 - b. $[A_x, A_y] = -2\mu E L_z$

where \vec{A} is the Runge-Lenz vector. If one includes cyclic permutation this yields the Lie algebra discussed in class.

- 5. Consider an elliptical orbit in the Kepler problem (V(r) = -k/r) with energy, E, and orbital angular momentum ℓ . Find $\overline{r^{-1}}$, $\overline{r^{-2}}$ and $\overline{\dot{r}^2}$ where the bar means time average. You may find the viral theorem helpful but you will need more input then that.
- 6. Suppose one has a "hard sphere" of radius *R* off of which a particle scatters via specular reflection---that is angle of incidence = angle of reflection on the plane tangent to the sphere. Find the differential cross-section.
- 7. Consider the potential $V(r) = \alpha/r^2$. Find the differential cross-section.