Physics 601 Homework 6---Due Friday October 15

- 1. In class starting with the action $S = \int d\tau (-m \mathbf{S})$ we used covariance to show that for a particle moving in a Lorentz scalar field $\frac{d((m+\mathbf{S})u^{\mu})}{d\tau} = \partial^{\mu}\mathbf{S}$ where $\partial^{\mu} \equiv g^{\mu\nu} \frac{\partial}{\partial x^{\nu}}$.
 - a. Show that this can be rewritten in the form $(m + \mathbf{S}) \frac{d(u^{\mu})}{d\tau} = \partial^{\mu} \mathbf{S} (\partial^{\alpha} \mathbf{S}) u_{\alpha} u^{\mu}$
 - b. Show that this equation of motion automatically satisfies the condition $\frac{d\left(u_{\mu}u^{\mu}\right)}{d\tau}=0.$ This indicates that imposition of covariance yielded a self-consistent result that respects the condition $u_{\mu}u^{\mu}=1.$
 - c. Show that in the non-relativistic limit where all of the velocities are much less than the speed of light and $\mathbf{S} << m$ the Lagrangian for the system reduces to $L = \frac{1}{2}m\dot{\vec{x}}^2 \mathbf{S}$ plus an irrelevant constant and the equation of motion reduces to $m\ddot{\vec{x}} = -\vec{\nabla}\mathbf{S}$.
- 2. Start from the action $S = \int d\tau \left(-m + V^{\mu}u_{\mu}\right)$ where A_{μ} is a four vector field that depends on space-time. Show that the equation of motion is $\frac{d\left(mu_{\mu}\right)}{d\tau} = \left(\frac{\partial V_{\mu}}{\partial x^{\nu}} \frac{\partial V_{\nu}}{\partial x^{\mu}}\right)u^{\nu}.$
- 3. In electro-magnetism, one can write the scalar and vector potentials in a form that looks like a 4-vector: $A^{\mu} = \begin{pmatrix} \Phi \\ A_x \\ A_y \\ A_z \end{pmatrix}$. Because one can make arbitrary gauge

transformations A^{μ} need not transform as a 4-vector.

- a. Show that a gauge transformation can be written in the form of the form $A_{\mu} \rightarrow A'_{\mu} = A_{\mu} + \frac{\partial G}{\partial x^{\mu}}$ where G is an arbitrary function of space-time which need not transform as a 4-scalar under Lorentz transformations .
- b. A sufficient condition to show that A^{μ} transforms as a 4-vector is to show that $\frac{\partial A^{\mu}}{\partial x^{\mu}} = 0$ with $|A^{\mu}| \to 0$ as $|\vec{x}| \to \infty$ Explain briefly why.
- c. Show that it is always possible to make a gauge transformation (i.e. to choose G) to ensure that A'^{μ} does transform as a 4-vector by picking

- choosing Λ to satisfy the condition $\partial_{\mu}A^{\mu}=-\partial_{\mu}\partial^{\mu}G$. This is called the Lorentz gauge.
- d. Show that the field-strength tensor $F_{\mu\nu} \equiv \partial_{\mu}A_{\nu} \partial_{\nu}A_{\mu}$ is gauge invariant. That is show that $F'_{\mu\nu} \equiv \partial_{\mu}A'_{\nu} \partial_{\nu}A'_{\mu} = F_{\mu\nu}$ for any transformation of the form given in part a.
- e. Show that $F_{\mu\nu}$ transforms under Lorentz transformations as a 4-tensor: $F_{\mu\nu} \to \Lambda_{\mu}^{\alpha} \Lambda_{\nu}^{\beta} F_{\alpha\beta}$ where Λ is the matrix which specifies the Lorentz transformation.
- f. Using the result problem 1, plus the preceding parts of this problem show that the equation of motion for a particle of mass m and charge q moving in an electro magnetic field is given by $\frac{d(mu^{\mu})}{d\tau} = qF^{\mu\nu}u_{\nu}.$
- 4. In the preceding section you showed that $\frac{d(mu^{\mu})}{d\tau} = qF^{\mu\nu}u_{\nu}$. Staring with this equation of motion show that of necessity $\frac{d(u_{\mu}u^{\mu})}{d\tau} = 0$. This indicates that equation of motion self-consistently respects the condition $u_{\mu}u^{\mu} = 1$.
- 5. Suppose that one has a charged particle with mass m and charge q interacting with external electromagnetic fields specified by the potentials $\Phi = 0$, $A_x = -E_0 t$, $A_y = A_z = 0$. Note that potentials are independent of special position.
 - a. Verify that these potentials satisfy the Lorentz gauge condition $\partial_{\mu}A^{\mu}=0$.
 - b. Construct the field strength tensor $F_{\mu\nu}$.
 - c. Suppose that the particle starts from rest at t=0, find the position of the particle as a function of time. (Hint, you may find your solution of problem 4.d of homework 5 to be useful.)
- 6. In class we found the Green's function for the harmonic oscillator. In this problem, I want you to find and use the analogous one for a damped oscillator. The damped driven oscillator satisfied the equation: $m\ddot{x} + 2\beta m\dot{x} + m\omega_0^2 x = f(t)$ where β is a damping parameter. The solution is $x(t) = \int_{-\infty}^{\infty} dt' G(t,t') f(t')$ where the Green's function satisfies $(\partial_t^2 + 2\beta\partial_t + \omega_0^2)G(t,t') = \delta(t-t')$. A useful first step in constructing this is to exploit the known solution for steady state motion with a harmonic driving force: $(\partial_t^2 + 2\beta\partial_t + \omega_0^2)x(t) = f_0e^{i\omega t}$ has a solution of the form of the form $x(t) = \frac{f_0e^{i\Omega(t-t')}}{\omega_0^2 \Omega^2 + 2i\beta\Omega}$. Thus $(\partial_t^2 + 2\beta\partial_t + \omega_0^2)\frac{e^{i\Omega(t-t')}}{\omega_0^2 \Omega^2 + 2i\beta\Omega} = e^{i\Omega(t-t')}$. Let us now integrate both sides with respect to Ω and divide by 2π :

$$\frac{\int_{-\infty}^{\infty} d\Omega \left(\partial_t^2 + 2\beta \partial_t + \omega_0^2\right) \frac{e^{i\omega(t-t')}}{\omega_0^2 - \omega^2 + 2i\beta \omega}}{2\pi} = \frac{\int_{-\infty}^{\infty} d\omega e^{i\omega(t-t')}}{2\pi}.$$
 We know that
$$\frac{\int_{-\infty}^{\infty} d\omega e^{i\omega(t-t')}}{2\pi} = \delta(t-t').$$
 Moreover on the left hand side we can pull

 $(\partial_t^2 + 2\beta\partial_t + \omega_0^2)$ out of the integral as it does not depend on ω . Thus

$$\left(\partial_t^2 + 2\beta \partial_t + \omega_0^2\right) \left(\frac{\int_{-\infty}^{\infty} d\omega \, \frac{e^{i\omega(t-t')}}{\omega_0^2 - \omega^2 + 2i\beta\omega}}{2\pi} \right) = \delta(t-t') \text{ and the object in the parenthesis}$$

is a Green's function.

- a. Evaluate the integral above using contour integration to find an explicit expression for G(t,t'). Note that the complex exponential implies that the $\frac{1}{2}$ plane in which the contour is to be closed depends on the sign of t-t'.
- b. Use this Green's function to find a solution of $m\ddot{x} + 2\beta m\dot{x} + m\omega_0^2 x = f_0 e^{-\Gamma t}\theta(t)$
- c. Consider the result in b. in the regime where $\Gamma > \infty > \beta$. In that regime the system should look like an underdamped oscillator getting a delta-functionlike impulse at t=0. Does it?