Physics 601 Homework 8--- Due Friday October 30

1. Three beads are free to move along a wire. They are connected two immovable walls by 4 springs. The masses and spring constants are as indicated on the figure. The third particle is charged and has a mass q. The first particle is attached to a shock absorber with a force given by $F = -m\omega_0\dot{x}$ where $\omega_0 = \sqrt{\frac{k}{m}}$. The last mass is charged. Suppose the system is place in an enectric field, oriented to the right with a magnitude of $E = -E_0\cos(2\omega_0 t)$. Find the positions of each mass as a function of time, assuming the system has reached stady state.

- 2. Consider a two-body system with reduced mass μ and a potential of the form $V = -ar^{-k}$ for a,k > 0 (a,k real).
 - a. Show that circular orbits exist for any $k \neq 2$ and find the relationship between the radius r_0 and L.
 - b. Linearize the equation of motion for r around r_0 and
 - i. Show that stable orbits only exist for k < 2
 - ii. Find the oscillation frequency for fluctuations in $\it r.$
 - iii. Find the values of k for which the orbits close.
- 3. Consider a two-body system with reduced mass μ and a potential of the form $V = ar^k$ for a, k > 0 (a, k real).
 - a. Show that circular orbits exist for any k and find the relationship between the radius r_0 and L.
 - b. Linearize the equation of motion for r around r_0 and
 - i. Find the oscillation frequency for fluctuations in r.
 - ii. Find the values of k for which the orbits close.

- 4. Use the equations of motion to show that for systems described by the Lagrangian $L = \frac{1}{2}\mu\dot{\vec{x}}^2 + \frac{\alpha}{r}$ (that is a Coulomb or gravitational system) show that
 - a. The Runge-Lenz vector defined by $\vec{A} = \vec{p} \times \vec{L} \alpha \mu \hat{r}$ (where $\hat{r} = \vec{x}/r$) is conserved.
 - b. The Runge-Lenz vector is in the plane of the orbit