Physics 601 Homework 4---Due Friday October 2

Jose and Saletan problems 5.9, 5.10, 6.1, 6.7

In addition:

- 1. In order to get intuition about classical mechanics it is sometimes useful to think quantum mechanically. In this problem I want you to focus on the relationship between action-angle variables and quantum mechanics (in its semi-classical regime). For one-dimensional quantum mechanics in its semi-classical limit, the spacing of energy levels varies slowly from level to level. (That is if one defines $\Delta E_n = E_{n+1} E_n$ then $\Delta E_n \approx \Delta E_{n+1}$ for n >> 1.) The semi-classical quantization condition is given by $\frac{1}{2\pi} \oint p \, dq = (n + \frac{1}{2})\hbar$. Classically, the angle variable is, by construction, cyclic and $\dot{\phi}$ is thus a constant. Show that in the semi-classical regime , $\dot{\phi}$ in the underlying classical system is related to ΔE in the quantum system through $\dot{\phi} = \frac{\Delta E}{\hbar}$.
- 2. Consider the canonical transformation for a system with one degree of freedom generated by: $F^2(q,P,t) = (q + \frac{1}{2}gt^2)(P mgt) \frac{P^2t}{2m}$.
 - a. Find the explicit form for the canonical transform.
 - b. Verify that it satisfies the canonical Poisson bracket relations.

For the remainder of this problem consider particle moving in one dimension in a constant gravitational field $L(q,\dot{q}) = \frac{1}{2}m\dot{q}^2 - mgq$.

- c. Use the fact that for any A, $\frac{dA}{dt} = \{A, H\} + \frac{\partial A}{\partial t}$ to show that $\frac{dQ}{dt} = 0$ and $\frac{dP}{dt} = 0$.
- d. Part c. implies that K the Hamiltonian associated with Q, P must be zero up to a possibly time dependent constant independent of Q, P. Show from the explicit form of $\frac{\partial F^2(q,P,t)}{\partial t}$ that this is in fact the case.
- e. What is the physical interpretation of Q, P.
- f. Show that $F^2(q,P,t)$ satisfies a Hamilton-Jacobi equation:

$$H\left(q, \frac{\partial F^2}{\partial q}\right) + \frac{\partial F^2}{\partial t} = 0.$$

g. Introduce the function the $f(t,Q,P) = F^2(q(Q,P,t),P,t)$. Show that $\frac{\partial f(t,Q,P)}{\partial t} = L(q(Q,P,t),\dot{q}(Q,P,t)).$