(The following is a more detailed or explicit derivation of the solution given in Eq. 2.126 of DT's notes of the system in Eq. 2.124.)

We would like to solve:

$$
\begin{equation*}
\ddot{\boldsymbol{\eta}}=F \boldsymbol{\eta} \tag{1}
\end{equation*}
$$

(as in Eq. 2.124 of DT's notes) where $\boldsymbol{\eta}$ is a column vector with n entries (i.e., a $n \times 1$ matrix). Also, F is a $n \times n$ matrix which is (in general) not symmetric, but has real eigenvalues $\left(\lambda^{2}\right)$, given by

$$
\begin{equation*}
F \boldsymbol{\mu}_{a}=\lambda_{a}^{2} \boldsymbol{\mu}_{a}, a=1,2 \ldots, n \tag{2}
\end{equation*}
$$

where $\boldsymbol{\mu}_{a}$ are the corresponding eigenvectors, taken to be column vectors with n entries. ${ }^{1}$ Note that (given that F might not be symmetric) these eigenvectors need not be orthogonal. Using these n eigenvectors as the columns, we construct a $n \times n$ matrix (denoted by P) as follows:

$$
\begin{equation*}
P=\left(\boldsymbol{\mu}_{1} \boldsymbol{\mu}_{2} \ldots \boldsymbol{\mu}_{n}\right) \tag{3}
\end{equation*}
$$

The matrix F can then be diagonalized using P and its inverse (which is not in general its transpose, since F need not be symmetric):

$$
\begin{equation*}
P^{-1} F P=\operatorname{diag}\left(\lambda_{1}^{2}, \lambda_{2}^{2}, \ldots, \lambda_{n}^{2}\right) \tag{4}
\end{equation*}
$$

[If you wish to check the above statement explicitly, then note that we can write P^{-1} in terms of its rows as:

$$
P^{-1}=\left(\begin{array}{c}
\boldsymbol{\zeta}_{1}^{T} \tag{5}\\
\boldsymbol{\zeta}_{2}^{T} \\
\ldots \\
\boldsymbol{\zeta}_{n}^{T}
\end{array}\right)
$$

where $\boldsymbol{\zeta}_{a}$'s $(a=1,2, \ldots, n)$ are column vectors with n entries. Then,

$$
\begin{equation*}
P^{-1} P=\text { identity } \tag{6}
\end{equation*}
$$

along with the above forms of P and P^{-1} implies that

$$
\begin{equation*}
\boldsymbol{\zeta}_{a}^{T} \cdot \boldsymbol{\mu}_{b}=\delta_{a b} \tag{7}
\end{equation*}
$$

Plugging in above forms of P and P^{-1} into LHS of Eq. (4) and using Eqs. (2) and (7), we easily get the RHS of Eq. (4).

As somewhat of a detour, multiplying both sides of Eq. (4) from the right by P^{-1}, we get

$$
\begin{equation*}
P^{-1} F=\operatorname{diag}\left(\lambda_{1}^{2}, \lambda_{2}^{2}, \ldots, \lambda_{n}^{2}\right) P^{-1} \tag{8}
\end{equation*}
$$

[^0]Plugging in form of P^{-1} in Eq. (5) into above, we get

$$
\begin{equation*}
\boldsymbol{\zeta}_{a}^{T} F=\lambda_{a}^{2} \boldsymbol{\zeta}_{a}^{T} \tag{9}
\end{equation*}
$$

i.e., $\boldsymbol{\zeta}_{a}$'s can be called (as in DT's notes) left eigenvectors of the matrix F.]

Inserting the identity matrix in the form of $P P^{-1}$ in-between F and $\boldsymbol{\eta}$ on the RHS of Eq. (1) and then multiplying by P^{-1} on both sides, we get

$$
\begin{equation*}
P^{-1} \ddot{\boldsymbol{\eta}}=P^{-1} F\left(P P^{-1}\right) \boldsymbol{\eta} \tag{10}
\end{equation*}
$$

Using Eq. (4) for the factor at the beginning of RHS in above gives

$$
\begin{equation*}
\left(P^{-1} \boldsymbol{\eta}\right)=\operatorname{diag}\left(\lambda_{1}^{2}, \lambda_{2}^{2}, \ldots, \lambda_{n}^{2}\right)\left(P^{-1} \boldsymbol{\eta}\right) \tag{11}
\end{equation*}
$$

Because of the diagonalized form of the above system of equations, the solution is simply

$$
\begin{equation*}
P^{-1} \boldsymbol{\eta}=\left[\left(A_{1} e^{+\lambda_{1} t}+B_{1} e^{-\lambda_{1} t}\right),\left(A_{2} e^{+\lambda_{2} t}+B_{2} e^{-\lambda_{2} t}\right), \ldots,\left(A_{n} e^{+\lambda_{n} t}+B_{n} e^{-\lambda_{n} t}\right)\right]^{T} \tag{12}
\end{equation*}
$$

where A_{a} and B_{a} are intergration constants. Multiplying by P from the left, we get

$$
\begin{equation*}
\boldsymbol{\eta}=P\left[\left(A_{1} e^{+\lambda_{1} t}+B_{1} e^{-\lambda_{1} t}\right),\left(A_{2} e^{+\lambda_{2} t}+B_{2} e^{-\lambda_{2} t}\right), \ldots,\left(A_{n} e^{+\lambda_{n} t}+B_{n} e^{-\lambda_{n} t}\right)\right]^{T} \tag{13}
\end{equation*}
$$

Finally, plugging the form of P from Eq. (3) into RHS of the above gives

$$
\begin{equation*}
\boldsymbol{\eta}=\sum_{a} \boldsymbol{\mu}_{a}\left(A_{a} e^{+\lambda_{a} t}+B_{a} e^{-\lambda_{a} t}\right) \tag{14}
\end{equation*}
$$

i.e., Eq. (2.126) of DT's notes. So, the general solution of Eq. (1) is a superposition of normal modes as in Eq. (14) above, where λ_{a}^{2} is eigennvalue corresponding to eigenvector μ_{a} of F, as in Eq. (2).

[^0]: ${ }^{1}$ For obvious reasons, DT's notes refer to these as right eigenvectors.

