Central force motion/Kepler problem

This short note summarizes our discussion in the lectures of various aspects of the motion under central force, in particular, the Kepler problem of inverse square-law (gravitational) force: for more details, refer to the notes that you should have taken during lectures or GPS chapter 3.

1 Reducing 2-body motion to effective 1-body, that too with 2 d.o.f and 1st order differential equations

(a). To begin with, we re-write the coordinates of the 2 bodies in terms of their relative coordinate (denoted by \mathbf{r}) and that of the center of mass (COM) (R). We assume that potential is a function only of \mathbf{r} or its time derivatives. Clearly, the COM then has a constant velocity, thus we neglect its motion and focus on that of \mathbf{r}, i.e., effectively 1-body (with reduced mass) moving around a fixed center of force (chosen to be at the origin).
(b). Furthermore, we assume that potential depends only on r (i.e., magnitude of \mathbf{r}), in which case the angular momentum (denoted by \mathbf{L}) is a constant of motion.
Using the direction of angular momentum being a constant of motion we deduce that motion is in a plane, i.e., we reduce from 3 to 2 dimensions (D)/degrees of freedom (d.o.f.), for which we will use polar coordinates $(r$ and $\theta)$.
(c). Magnitude of angular momentum:

$$
\begin{equation*}
l=m r^{2} \dot{\theta} \tag{1}
\end{equation*}
$$

is also constant.
(d). Kepler's 2nd law (areal velocity of planets, $=\frac{1}{2} r^{2} \dot{\theta}$ is constant, for any central force) follows from l being constant.
(e). Since force is conservative (Lagrangian is time-independent), it follows that energy (E) also constant: it is given by sum of potential energy (PE) and kinetic energy (KE)

$$
\begin{align*}
E & =V(r)\left(\text { "original" PE) }+\frac{1}{2} m \dot{r}^{2}\left(\text { "radial" KE) }+\frac{1}{2} m r^{2} \dot{\theta}^{2}\right. \text { (angular KE) }\right. \tag{2}\\
& =V(r)+\frac{1}{2} m \dot{r}^{2}+\frac{l^{2}}{2 m r^{2}} \text { using Eq. (1) } \tag{3}
\end{align*}
$$

From Eq. (3) just above, we have

$$
\begin{equation*}
\dot{r}=\sqrt{\frac{2}{m}\left[E-V(r)-\frac{l^{2}}{2 m r^{2}}\right]} \tag{4}
\end{equation*}
$$

Using Eqs. (3) and (1), i.e., the two constants of motion, we are thus down to first order differential equations (DE's) for r and θ (cf. 2nd order to begin with, i.e., either directly using Newton's laws or via Largrange's equations)
(f). In particular, formal solution for $t(r)$ - integrating Eq. (4) - is

$$
\begin{equation*}
t=\int_{r_{0}}^{r} \frac{d r^{\prime}}{\sqrt{\frac{2}{m}\left[E-V\left(r^{\prime}\right)-\frac{l^{2}}{2 m r^{\prime 2}}\right]}} \tag{5}
\end{equation*}
$$

where r_{0} is the value of r at $t=0$.

2 Detour: equivalent 1D potential

(a). In fact, Eq. (3) suggests an equivalent 1D potential, i.e., for motion of r only, given by

$$
\begin{equation*}
V^{\prime}(r) \equiv V(r)+\frac{l^{2}}{2 m r^{2}} \tag{6}
\end{equation*}
$$

(with kinetic energy of this 1D motion being $m \dot{r}^{2} / 2$ to make up total energy).
(b). The advantage of V^{\prime} is that we can readily (i.e., without actually solving EOM) deduce qualitative features such as motion is bounded (unbounded) for $E<(>) 0$ for a class of potentials of the form $V=-k / r^{p}$, with $k>0$ and $0<p<2$ (which includes inverse-square law force).
(c). In addition, energy and radius of circular orbit for inverse square law $(p=1)$ is given by minimum of $V^{\prime}(r)$:

$$
\begin{align*}
E_{\text {circular }} & =-\frac{m k^{2}}{2 l^{2}} \\
r_{\text {circular }} & =\frac{l^{2}}{m k} \tag{7}
\end{align*}
$$

3 "Eliminating" time: orbit equation

(a). It is easier to compute (and useful to know) $r(\theta)$ by "canceling" dt between Eqs. (1) and (4) and integrating:

$$
\begin{equation*}
\theta=\int_{r_{0}}^{r} \frac{d r}{r^{2} \sqrt{\frac{2 m E}{l^{2}}-\frac{2 m V(r)}{l^{2}}-\frac{1}{r^{2}}}}+\text { constant } \tag{8}
\end{equation*}
$$

(b). For Kepler problem, we get conic sections for comets/planets (Kepler's 1st law, valid only for inverse-square law force):

$$
\begin{equation*}
\frac{1}{r}=\frac{m k}{l^{2}}\left[1+e \cos \left(\theta-\theta^{\prime}\right)\right] \tag{9}
\end{equation*}
$$

with eccentricity given by

$$
\begin{equation*}
e=\sqrt{1+\frac{2 E l^{2}}{m k^{2}}} \tag{10}
\end{equation*}
$$

and θ^{\prime} corresponding to closest approach to focus (perihelion). Thus, we have hyperbolic ($e>1$), parabolic $(e=1)$, elliptical $(0<e<1)$ and circular $(e=0)$ orbits respectively for $E>0, E=0$, $E<0$ and $E=-m k^{2} /\left(2 l^{2}\right)$. All these conclusions match those obtained simply using equivalent 1D potential (i.e., without actually solving EOM, cf. approach just above); in particular, the last result doing so quantitatively, i.e., being same as 1st line of Eq. (7).

4 More "playing around"

(a). A useful relation can be obtained between the semi-major axis of the ellipse, a (i.e., sum of distances from focus to points of closet and farthest approaches or turning points) and E [based on the quadratic equation for turning points obtained by setting $\dot{r}=0$ in Eq. (3)]:

$$
\begin{equation*}
a=-\frac{k}{2 E} \tag{11}
\end{equation*}
$$

In turn, Eqs. (10) and (11) give

$$
\begin{equation*}
e=\sqrt{1-\frac{l^{2}}{m k a}} \tag{12}
\end{equation*}
$$

(b). Kepler's 3rd law (relating time period of orbit of planets, τ to size) can be obtained by equating area from 2nd law to that of ellipse [in terms of a and e from Eq. (12)]:

$$
\begin{equation*}
\tau=2 \pi a^{\frac{3}{2}} \sqrt{\frac{m}{k}} \tag{13}
\end{equation*}
$$

For $m_{\text {planet }} \ll m_{\text {Sun }}$, we get reduced mass, $m \approx m_{\text {planet }}$. Also, we have k (constant in potential $)=$ $G_{N} m_{\text {planet }} m_{\text {Sun }}$ so that indeed

$$
\begin{equation*}
\tau \propto a^{\frac{3}{2}} \tag{14}
\end{equation*}
$$

i.e., proportionality constant is independent of planet.

5 Complete solution: $r(t)$ and $\theta(t)$

5.1 Parabola

In this case, the integral for $t(\theta)$ is easier as follows. In general, plugging $r(\theta)$ from Eq. (9) into Eq. (1) (and rearranging/integrating), we have

$$
\begin{equation*}
t=\frac{l^{3}}{m k^{2}} \int^{\theta} \frac{d \tilde{\theta}}{\left[1+e \cos \left(\tilde{\theta}-\theta^{\prime}\right)\right]^{2}}+\text { constant } \tag{15}
\end{equation*}
$$

For parabola, i.e., $e=1$, this simply gives (choosing perihelion to be at $t=0$ and $\theta=0$, i.e., setting $\theta^{\prime}=0$):

$$
\begin{equation*}
t=\frac{l^{3}}{2 m k^{2}}\left(\tan \frac{\theta}{2}+\frac{1}{3} \tan ^{3} \frac{\theta}{2}\right)+\text { constant } \tag{16}
\end{equation*}
$$

which can be inverted to give $\theta(t)$ and plugging this into Eq. (9) can give $r(t)$.

5.2 Ellipse

(a). For this case, we define an intermediate/auxiliary variable, ψ (called "eccentric anomaly", θ being true anomaly) by

$$
\begin{equation*}
r \equiv a(1-e \cos \psi) \tag{17}
\end{equation*}
$$

(b). We can get further insight into ψ by comparing $r(\psi)$ in Eq. (17) to $r(\theta)$ in Eq. (9) re-written using Eq. (12) (and assuming $\theta^{\prime}=0$), i.e.,

$$
\begin{equation*}
r=\frac{a\left(1-e^{2}\right)}{1+e \cos \theta} \tag{18}
\end{equation*}
$$

This gives

$$
\begin{equation*}
\tan \frac{\theta}{2}=\sqrt{\frac{1+e}{1-e}} \tan \frac{\psi}{2} \tag{19}
\end{equation*}
$$

Clearly, as θ goes through a complete revolution/cycle (0 to 2π), so does ψ (justifying it as an "angle"), although (in general) at a different (instantaneous) rate than does θ.
(c). The point of introducing a 2nd angle (ψ) is that evaluating integral in $t(r)$ of Eq. (5) is easier using $r(\psi)$, i.e.,

$$
\begin{align*}
t & =\sqrt{\frac{m}{2 k}} \int^{r} \frac{r^{\prime} d r^{\prime}}{\sqrt{r^{\prime}-\frac{r^{\prime}}{2 a}-\frac{a}{2}\left(1-e^{2}\right)}}+\text { constant } \\
& =\sqrt{\frac{m a^{3}}{k}} \int^{\psi}\left(1-e \cos \psi^{\prime}\right) d \psi^{\prime}+\text { constant } \tag{20}
\end{align*}
$$

where 1st line is obtained plugging $V(r)=-k / r$ and Eqs. (12) and (11) into Eq. (5) and 2nd line using Eq. (17).
Even though it is not really needed, we can introduce (angular) frequency of oscillation:

$$
\begin{equation*}
\omega \equiv \frac{2 \pi}{\tau} \tag{21}
\end{equation*}
$$

corresponding to a 3 rd (!) angle, called mean anomaly

$$
\begin{equation*}
\phi \equiv \omega t \tag{22}
\end{equation*}
$$

which (obviously) goes from 0 to 2π over one period, that too uniformly so [cf. θ and ψ are not (in general) linear in time.]
We can easily evaluate the integral in 2nd line of Eq. (20) (asssuming $\psi=0$ at $t=0$) and use above notation to re-write it as

$$
\begin{equation*}
\phi(t)(=\omega t)=\psi-e \sin \psi \tag{23}
\end{equation*}
$$

which is the Kepler equation: solving this transcendental equation gives $\psi(t)$, which when plugged into Eqs. (19) and (17) finally gives us $r(t)$ and $\theta(t)$.

6 Another constant of motion: Laplace-Runge-Lenz vector

(a). Clearly, direction of angular momentum, i.e., $\hat{\mathbf{L}}$, fixes which plane the orbit is in, whereas l and E determine size and shape of orbit, e.g., via Eqs. (11) and (10) for ellipse.
(b). What remains is the (fixed) orientation of major axis of ellipse in plane: it is given by direction of another constant of motion (only for inverse square-law force) called Laplace-Runge-Lenz vector (denoted by \mathbf{A}):

$$
\begin{equation*}
\mathbf{A}=p \times \mathbf{L}-m k \frac{\mathbf{r}}{r} \tag{24}
\end{equation*}
$$

We can show using EOM of \mathbf{r} that $d \mathbf{A} / d t=0$.
Also, A being constant can be used to (re-)derive that orbit is a conic section: this analysis shows that A points in direction from focus to perihelion (point of closest approach), thus fulfilling its role as above.
(c). $|\mathbf{A}|$ is also constant and is related to E and l

$$
\begin{equation*}
|\mathbf{A}|=m^{2} k^{2}\left(1+\frac{2 E l^{2}}{m k^{2}}\right) \tag{25}
\end{equation*}
$$

