Here is the derivation of Eq. 3.7 of David Tong's note using Eqs. 3.5 and 3.6. Plug a suitable version of Eq. 3.6, namely,

$$
\begin{equation*}
\omega_{b}=\frac{1}{2} \epsilon_{b d e} \omega_{d e} \tag{1}
\end{equation*}
$$

into the factor in the middle term of Eq. 3.7 in order to get

$$
\begin{align*}
-\epsilon_{a b c} \omega_{b} & =-\frac{1}{2} \epsilon_{a b c} \epsilon_{b d e} \omega_{d e} \\
& =-\frac{1}{2} \epsilon_{b c a} \epsilon_{b d e} \omega_{d e} \tag{2}
\end{align*}
$$

where in 2 nd step, the invariance of ϵ (Levi-Civita symbol) under cyclic permutation is used. Next, the following identity involving ϵ :

$$
\begin{equation*}
\epsilon_{b c a} \epsilon_{b d e}=\delta_{c d} \delta_{a e}-\delta_{c e} \delta_{a d} \tag{3}
\end{equation*}
$$

substituted above gives

$$
\begin{align*}
-\epsilon_{a b c} \omega_{b} & =-\frac{1}{2}\left(\omega_{c a}-\omega_{a c}\right) \\
& =\omega_{a c} \tag{4}
\end{align*}
$$

where anti-symmetry of ω is used in 2nd step. This is precisely the factor on RHS of Eq. 3.5.

