Physics 420

Principles of Modern Physics

Spring 2012

Prerequisite: PHYS270 and PHYS271, or PHYS273; and MATH246.
A survey of atomic and nuclear phenomena and the main trends in modern physics.
Appropriate for students in engineering and other physical sciences.
Lectures: TuTh...... 3:30pm- 4:45pm (PHY 1402)
Prof. Dieter Brill
Office: 4202 Toll Physics bldg
Phone: 405 6027
Office hours: by appointment
Modern Physics, by Serway, Moses and Moyer, 3rd Edition,
Thomson, Brooks, Cole 2005. ISBN 0-534-49339-4

Reading and Homework
As the textbook states, Our experience has shown that there is more material contained in this book than can be covered in a standard one semester three-credit-hour course. We will cover approximately 12 chapters, and even of those not every topic in each chapter. The approximate progression of topics can be found in the Course Schedule below. The schedule may lag or advance by one lecture if some topics take more or less time than expected.
To enhance your comprehension of a particular subject to be covered, you should read the material in the text before coming to the lecture. To encourage this you will be asked to submit a "blended learning" activity before each lecture, which will enter into your grade and, more importantly, enable you to ask questions about ideas you may not be able to grasp fully on the first reading. I encourage questions in class (to the extent time permits)

Homework will be assigned about once per week and must be turned in at the beginning of class on the specified date (or earlier). Don’t wait until the last day to get started! Please do all of the homework and turn it in on time, unless you have a valid excuse (i.e. illness, a religious observance, or some other compelling reason). Homework problems are carefully chosen to highlight some of the important topics covered in lecture, as well as important applications of the material. It is important that you carefully complete and make sure you understand all of the homework. You are encouraged to work with others on homework, however, it is forbidden to blindly copy another person's work.

Course website
This course was scheduled to participate in the trial of a new course space, Canvas. This trial has just (Juanuary 10) been aborted. According to current information our elms course space will instead be using the old, blackboard envoronment. Because this change only just occurred, the elms site for this course is not yet ready When it is ready this syllabus will be revised to let you know how to log on, and an email will also be sent to all enrolled.
You will rely on the course website for all information about the course. Annoucements, homework assignments, blended reading activities, your scores, and updates of this syllabus will be posted there. As a preview, here is the first homework:

Serway, Chapter 1, problems 3*, 10, 14, 22, 40**
*Find the total momentum in the rest frame; find the momenta in the moving frame by Galilean transformation; add them; show that this sum is the Galilean transform of the total rest frame momentum.
**You will show nonorthogonality in the Eucliean metric of the paper on which the diagram is drawn. There is a more appropriate notion of orthogonality in spacetime (based on the invariant interval) for which the axes in all Lorentz frames are orthogonal.

and the first reading question:

The argument leading the Eq (1.8), and Figure 1.10, makes an implicit assumption about transformation of lengths. (It gets away with it because the reader has not yet encountered length contraction, which is two pages later.) What is the length that is not transformed? Should this assumption be justified, or is it obvious? Can you prove it? Suppose the train is in a tunnel and just fits, according to a stationary observer. What about the train observer? Is the presence of scratches on the tunnel wall invariant or observer-dependent?

How to do well in this course
Read the textbook before the material is presented and discussed in class. Come to the lectures. Do all the homework. Ask for help (your teacher, TA, or a classmate) whenever there is something you don’t understand. We’re here to help with the material! Review your notes and past homework assignments before each exam.

Exams and Term paper
Exams will be based on material in the text as well as material presented in class. Exams are cumulative. There will be two exams during the semester plus a term paper. The exams will be given in class, on paper, and will be closed book. I do not expect you to memorize equations and constants. You may bring one index card with equations for the first exam and two index cards for the second exam, and one full sheet of paper for the final exam. Any needed physical constants or data will be provided. You will need a calculator with standard trigonometry functions, etc. Exams must be taken on the scheduled days unless you have a valid excuse. If you know in advance that you will have to miss an exam, please inform me as soon as possible.
Academic dishonesty is strictly forbidden and will be dealt with according to University policy. You will sign the honors pledge on each exam.
Your final course grade is made up with the composition of 25% homework and pre-lecture questions, 25% for each of the two mid-term exams, and 25% for you term papeer.

Course Schedule
Tu  Th  Topics*
  Jan  26Chapter 1: Michelson-Morley, Lorentz transformation
31Spacetime, Twin paradox
Feb2Chapter 2: Relativistic momentum and energy
79E = mc², General relativity
1416Chapter 3: Quantum theory of light, blackbody radiation, compton scattering, photoelectric effect...
2123Chapter 4: Atoms, Bohr atom, Correspondence Principle
28Chapter 5: Matter waves, Heisenberg uncertainty, wave particle duality
Mar1Exam 1: Chapters 1-4 (date is tentative)
68Chapter 6: Schrödinger equation, Particle in a box
1315Quantum Oscillator, Observables and Operators
2022Spring Break, no class
2729Chapter 7: tunneling and reflection
Apr35Chapter 8: Particle in a three-dimensional box
10Angular momentum, Hydrogen Atom
12Exam 2: Chapters 5-7 (date is tentative)
1719Chapter 9: Atomic Structure, electron spin
2426Exclusion principle
May13Chapter 10, 12: Quantum statistics, Band theory, Lasers
810Chapter 16: Cosmology
14Term paper due

*most important only are mentiond, but whole Chapter may not be covered. More detail on Canvas elms

Class attendance
I will not take attendance in class. However, you are responsible for all material covered in class. I will try to post any slides that I use, but these are not inclusive. You are also responsible for any notes written on the board, demonstrations, and class discussions. We will occasionally discuss topics not explicitly covered in the book. While I will be happy to help you outside of class with any concepts you are struggling with, I will not be willing to privately recap material that you missed due to unexcused absences.
The use of cell phones in class is strictly prohibited.

Honor Code
As a student you are responsible for upholding the honor code standards for the University. For more information on the code of Academic Integrity or the Student Honor Council, please visit:

Students with disabilities
Accommodations will be provided to enable students with disabilities to participate fully in the course. Please discuss any needs with your instructor at the beginning of the semester so that appropriate arrangements can be made.

Weather and emergency closures
If the University is closed due to weather or some emergency situation on a day when homework is due, then that homework must be turned in at the beginning of the next class period when the University is open. If the University is closed on the scheduled date of an exam, then the exam will be given during the next class period when the University is open. If the University is closed on any non-exam day, including a review session, then the exam will still be given according to the original schedule. Regularly check the course Elms site to receive information regarding the course schedule.

Course Evaluations
Your participation in the evaluation of courses through CourseEvalUM is a responsibility you hold as a student member of our academic community. ( Your feedback is confidential and important to the improvement of teaching and learning at the University as well as to the tenure and promotion process. By completing all of your evaluations each semester, you will have the privilege of accessing online, at Testudo, the evaluation reports for the thousands of courses for which 70% or more students submitted their evaluations